НОРМАЛИЗАЦИЯ ГИДРОЛОГИЧЕСКОГО РЕЖИМА ЭКОСИСТЕМ ЗАПОВЕДНИКА «ТИГРОВАЯ БАЛКА» С ЦЕЛЬЮ ДОСТИЖЕНИЯ УСТОЙЧИВОСТИ РАЗВИТИЯ ЭКОСИСТЕМ

NORMALIZATION OF THE HYDROLOGICAL REGIMEOF THE ECOSYSTEMS
OF THE RESRVE"TIGER BEAM" INORDER TO ACHIEVE
THE SUSTAINABLEDEVELOPMENT OF ECOSYSTEMS

Благовещенская С.Т., Благовещенский Я.Э., Бабаджанова М.П.²

 1 Институт зоологии и паразитологии АН Республики Таджикистан, г. Душанбе 2 Региональный экологический центр в Республике Таджикистан, e-mail:blagosvetlana@mail.ru

Территориально заповедник расположен в границах трех районов: Кабодиенского (правобережье Вахша), Джиликульского и Кумсангирского (левобережье). В связи с зарегулированием ряда гидроэлектростанций стока р. Вахш уровень воды в реке понизился. Возникла проблема обезвоживания значительных территорий вследствие прекращения разливов. Разливы Вахша играли и еще одну положительную роль: покрывая обширные площади слоем воды в период наиболее интенсивного испарения (июль, август), они препятствовали засолению территории, а во время спада воды выносили поверхностными и грунтовыми водами излишки солей.

В связи со строительством Рогунской и Сангтудинских ГЭС воды реки Вахш будут зарегулированы, уровень воды в реке понизится (еще больше по сравнению с тем понижением, которое наблюдалось после строительства Нурекской ГЭС). Понизится уровень подземных вод, и заповедник «Тигровая балка» ожидает гибель как тугайнопойменного ландшафта, на смену которому придут пустынные ландшафты с солончаковыми и солонцовыми сообществами. Мировое сообщество лишится последнего заповедного места с таким уникальным ландшафтом. Таджикистан должен гордиться, что является единственным в мире государством, где находится такой заповедник, как «Тигровая балка».

С 1997 года большую помощь (техническое оснащение, экологическое образование) через НПО Фонд «Кухистон» оказывал Всемирный Фонд дикой природы – WWF, координатор которого по Центральной Азии (Переладова О.Б.) находится в России (г. Москва). Комитет охраны природы и лесного хозяйства совместно с WWF и НПО Фонд «Кухистон» при участии высококвалифицированных специалистов Минводхоза РТ в 2005 году провел исследования водного режима озер заповедника для обоснования проекта по восстановлению водообеспечения. В результате работ было определено, что необходимая водоподача в озерную систему южной части заповедника составляет 51 млн. м³ в год.

В конце 2005 года при финансовой поддержке WWF были проведены работы по очистке водоподающего канала в озеро Халкакуль (кордон «Королевская дача»). В результате работ пересохшее (до луж) озеро было возвращено в естественное состояние. В 2006 году также при финансовой поддержке WWF были проделаны работы по строительству дрены для сброса вод с заболоченных земель севернее кордона «Пожарка» в озеро Гуликовское. Одновременно были проведены инженерно-технические мероприятия по строительству нового шлюза на водоподающем канале озера Тухлое — протока Худайкуль. В районе кордона «Тарзанье» был построен канал для аварийного сброса воды из протоки Худайкуль в озеро Балабановское.

Проведенные мероприятия по улучшению гидрологических условий дали положительный эффект, но в 2007 году при заполнении водохранилища Сангтудинской ГЭС и уменьшении уровня воды реки Вахш грунтовое питание озер сократилось. Также произошло зарастание водоподающих каналов камышом и образование природных и

техногенных заторов. Это вызвало падение уровня в озере Дарьякуль и, соответственно, во всех нижележащих озерах заповедника.

По заданию WWF в 2007 году были проведены гидрологические исследования, на основании которых был выработан комплекс мероприятий по водообеспечению озерной системы заповедника и сохранению его природных эколандшафтов.

Краткая физико-географическая характеристиказаповедника

Абсолютные отметки пойменной части заповедника составляют 324—322 м. над уровнем моря, наиболее высокой является гора Бурютау в южной части с абсолютной отметкой 637,9 м. Ветровой режим умеренный, скорость ветра составляет 1—2 м/сек, в периоды «афганцев» (пылевые бури, идущие со стороны Афганистана) увеличивается до 5—8 м/сек.

Большая площадь заповедника и практически все озера приурочены к лево-бережной части. Общая площадь заповедника 52,2 тыс.га, в т.ч. лесная площадь 26,4 тыс.га и нелесная – 26,8 тыс.га. Озера представляют собой старицы русла реки Вахш.

Основным ландшафтом является тугайно-пойменный тип, приуроченный преимущественно к левобережной долине, где его площадь составляет около 20 тыс.га.

Климат района сухой, резко континентальный. Абсолютный максимум темпе-ратуры воздуха $+47^{\circ}$ С, снег выпадает редко и держится не более 2 дней. В редкие суровые зимы снегопады значительны, зимой 1944/45 гг. температура опускалась до 26° С. Аналогичная зима отмечалась в 2007–2008 годы. Снежный покров держался более месяца. Озера покрылись льдом толщиной 10–12 см.

Методика работ

При выполнении работ были использованы спектральные космоснимки для детализации меандрирующего русла реки Вахш, местоположения озер, их конфигурации, площади зеркала. Привязка осуществлялась при полевых работах с помощью ГИС. Соответственно также определялись площади развития тугайной и озерной растительности.

Системы ирригационных сооружений (каналы, дрены), их существующая характеристика (расходы, минерализация вод) взяты из имеющихся в настоящее время данных Министерства мелиорации и водного хозяйства РТ и замерами в процессе полевых работ.

Химические анализы водных проб были выполнены в Институте химии АН РТ. Состояние озер, их глубины и динамика снижения уровня оценивались по личным многолетним наблюдениям авторов отчета и устного опроса работников заповедника. Система межозерных каналов, сооруженных хозспособом, представлена лесничими заповедника.

При строительстве канала озеро Дарьякуль – протока Худайкуль производилась планировка трассы бульдозером, выборка грунта — экскаватором типа «Драглайн». Очистка заторов на водоподающих каналах производилась вручную и с применением техники (колесный экскаватор), ручная вырубка камыша на протоках производилась с использованием лодки. При строительстве плотин с целью устранения утечек воды применялся гусеничный бульдозер.

Морфология озер

В рельефе заповедника геоморфологически хорошо выделяются три уровня террас, причем третья — надпойменная терраса — спускается уступом высотой 4—6 м ко второй пойменной террасе. Эта терраса в северной части заповедника не заливалась водами р.Вахш даже при значительных половодьях, на второй пойменной террасе располагается ряд озер — Гуликовское, Корчевое, Тухлое и др., приуроченных к древним старицам. Древесная растительность выкорчевана.

Южнее вторая терраса выклинивается, и третья терраса высоким (около 10 м) уступом спускается к озеру Дарьякуль. Вторая терраса, сложенная глинистыми песками, супесями с прослоями гравия и гальки на 1,5–2 м возвышается над первой пойменной террасой, на которой расположены основные озера заповедника и развита болотно-озерная растительность. Первая терраса сложена глинистыми песками, супесями с линзами мелкой гальки и гравия. Тугайные леса располагаются, как правило, на возвышенностях сложной конфигурации, относящихся к фрагментам второй террасы.

В периоды прежних паводков р.Вахш временно заливались первая пойменная и вторая терраса частично. Все озера представляют собой старицы р.Вахш и углубленные участки брошенного русла реки. Формы озер разнообразны – подковообразные, линейно-вытянутые, на участках старых плесов формируются неглубокие озера овальной формы.

Водный режим озер

Озера Джиликуль, Корчевое и др., расположенные на второй террасе, ранее имели незначительные размеры, периодически усыхали до отдельных луж (П.Д. Резвой, «Пойменные водоемы левобережья Нижнего Вахша в сб. «Заповедник «Тигровая балка»», изд. АН Тадж.ССР, 1960 г.), и площадь покрывалась солончаками. Минерализация озер достигала 55 г/л. После освоения земель и сброса поливочно-дренажных вод в северную часть заповедника минерализация озер уменьшилась до 1,5 г/л. Излишки воды сейчас сбрасываются по системе сооруженных силами лесхоза каналов и естественных проток в гипсометрически нижележащие озера – Балабановское, Базовое, Дарьякуль и др. Ранее (в восьмидесятые годы) для защиты озер от поступления химизированных и загрязненных ядохимикатами вод вдоль северной границы заповедника, под уступом граничной третьей террасы, был сооружен обводной канал. Канал в настоящее время заилен, частично засыпан вывалами с обрыва террасы и принимает в себя воды только дрен ВД-9, ВД-11, которые сбрасываются в р.Вахш. Воды коллектора КВ-4 и дрен ВД-10, а также частично ВД-9 в суммарном расходе 1,75 м³/сек (минерализация 1,5–1,7 г/л) в летний период являются единственными источниками поступления поверхностных вод в озера северной части заповедника (из-за завала обводного канала). Озера здесь в настоящее время переполнены, северная часть земель вдоль обводного канала заболочена.

Питание озер последние 20 лет происходит только за счет атмосферных осадков (≈200 мм. год) и сброса вод с освоенных вышележащих массивов. Грунтовые воды (возможно) принимают участие в балансе наиболее глубоких озер (Тухлое, Дарьякуль, Халкакуль и Дедово), днища остальных неглубоких озер покрыты слоем ила мощностью более 0,5 м и являются «подвешенными» над грунтовыми водами. Отметка дна (наибольшая) озер Базовое, Балабановское и ряда других на 3−4 м превышает отметку уровня воды в р.Вахш в меженный (основной) период водотока.

Размеры озер в южной части заповедника (от озера Дарьякуль и ниже) за последние годы претерпели значительные изменения, площадь зеркала сократилась более чем вдвое, значительно уменьшились глубины, часть озер исчезла (Голубое), другие распались на цепочку (Алакуль). Глубина озера Халкакуль на 10.08.2005 не превышает 2 м при прежней 5 м. Падение уровня воды в озере Халкакуль за 2004–2005гг. превысило 2 м, озера Дедова -1 м, озера Дарьякуль -0.7 м. Минерализация в озере Халкакуль превысила 5 г/л.

Мероприятия по водообеспечению озерной системы заповедника «Тигровая балка»

В результате детальных исследований, проведенных в период 19–21 октября 2007 года для водообеспечения озерной системы заповедника «Тигровая балка» целесообразно:

- 1. Сооружение канала протяженностью 1,5–2 км от «обводного» канала в северной части заповедника до протоки озер Гуликовское Корчевое, что позволит:
- ликвидировать или значительно снизить заболоченность северо-западной части заповедника (западнее кордона «Пожарка»), вызываемую прорывом воды из заиленного «обводного» канала;
- подать дополнительно круглогодично 2-3 м 3 /сек воды в озерную систему заповедника. Воды дренажно-сбросные, минерализация не выше 1,2 г/л.
- 2. Строительство капитального шлюза в головной части канала (предлагаемого в п.1) в районе соединения с «обводным» каналом, что позволит:
- прекращать водоподачу в озерную систему при применении ядохимикатов на орошаемых землях;
 - производить ремонтные работы по трассе канала.
- 3. Строительство канала длиной 1,5–2 км с водопропускной способностью 2–3 м³/сек от протоки Худайкуль (подающей воду из озер Гуликовское–Корчевое–Тухлое в оз. Базовое–Балабаново–Дарьякуль) непосредственно в северное окончание оз.Дарьякуль, что позволит:
- забрать дополнительный объем воды, поступающий по выполнению п.1 данных «Мероприятий» в северную систему озер заповедника;
- ликвидировать угрозу прорыва воды из оз. Базовое–Балабаново в р.Вахш от дополнительной водоподачи по п.1;
- предотвратить заболачивание земель в районе оз. Базовое–Балабаново от дополнительной водоподачи;
 - значительно сократить транзит водоподачи в южную часть заповедника.
- 4. Сооружение грунтовых плотин (2 ед.) на каналах (прорывах воды) из оз. Дарьякуль и Девятское, что позволит:
 - устранить утечку воды в размере 1,0 м³/сек из оз.Дарьякуль;
- устранить утечку воды из оз. Девятское в размере 1,5-2,0 м 3 /сек в полностью заболоченное оз.Новое;
- подать дополнительно воду в объеме 2–2,5 м³/сек в водоподающий канал на озера Халкакуль–Дедово и, возможно, на высохшее оз. Голубое.
- 5. Сооружение плотины на участке водораспределения из канала в оз. Халкакуль –Дедово на оз. Аллокуль, что позволит:
- ликвидировать утечку основного объема воды из канала на оз. Халкакуль–Дедово в оз. Аллокуль, которое находится в удовлетворительном состоянии за счет подпитки грунтовыми водами от близлежащего русла р.Вахш.
- 6. Проведение точечной очистки канала от оз. Дарьякуль в оз. Халкакуль—Дедово в месте затора от упавшего моста (район «Песчаного перевала»), что позволит убрать заболоченность и увеличить транзит воды.

Представленные первоначально (в начале сентября 2007 г. п.3) предложения по продолжению очистки водоподающего канала в южной части заповедника на оз. Халкакуль—Дедово нецелесообразны в связи с естественным быстрым зарастанием русла канала камышом. Оптимальным вариантом является увеличение водоподачи по каналу (глубины воды), что уменьшит или прекратит зарастание.

- 7. Сооружение насосной станции на левом берегу р. Вахш с подающей способностью $1,5~{\rm m}^3/{\rm cek}$ на высоту 4 м, что позволит:
- ввести в озерную систему чистую, не загрязненную химическими реагентами и ядохимикатами воду для нормального функционирования гидробиологических компонентов озер;
 - уменьшить темпы повышения минерализации озер от испарения.

Рекомендации по дальнейшему водообеспечению заповедника «Тигровая балка»

- 1. Продолжить (после окончания проекта в 2012 г.) в 2013–2015 гг. водообеспечивающими мероприятиями, привлекая международные гранты и государственные финансирования:
- А) Произвести очистку канала озеро Халкакуль—озеро Дарьякуль от района прекращения работ 2005 года до заболоченного участка района строительства плотины на протоке в озеро Алакуль. Длина очистки канала 1,4 км.

В результате будет очищен канал от песчаных заносов с вышележащей песчаной террасы и корневой системы камыша, что уменьшит транзит и прекратит потерю воды на заболоченном участке. Ожидаемый прирост водопоступления в оз. Халкакуль—Дедово до $0.2-0.25~{\rm m}^3/{\rm cek}$.

- Б) Произвести углубление и расширение зоны водозабора на развилке канала оз. Халкакуль—Дедово на озеро Новое—река Вахш. Проведенные ранее работы по строительству плотин, расчистка устья канала колесным экскаватором, вырубка камыша не обеспечивают прекращение водопотерь из-за утечки воды через протяженное камышовое мелководье. Протяженность расширения и углубления зоны 0,2 км. Ожидаемая ликвидация потерь воды составляет 1 м³/сек.
- В) Строительство шлюза на обводном канале в районе устья ВД-9 и также канала длиной 1,5–2,0 км от обводного канала до озер Гуликовское–Корчовое. Это позволит ликвидировать заболоченность в северной части заповедника, подать круглогодично 1,5–2,0 $\rm m^3$ воды в озерную систему заповедника, а также прекращать водоподачу при применении ядохимикатов на орошаемых землях.
- 2. Разработать в 2013—2015 гг. проект строительства канала водопропускной способностью не менее $0.5 \, \mathrm{m}^3$ /сек от водовода Кумсангирского канала до озера Дарьякуль. Протяженность канала $4.0-4.5 \, \mathrm{km}$. Данный канал располагается на государственных землях Кумсангирского Хукумата, и для проектирования работ необходимо привлечение Минводхоза РТ. Канал обеспечит поступление пресной $(0.5-0.6 \, \mathrm{r/n})$ воды в южную зону заповедника, что снизит темпы роста минерализации озер от испарения.
- 3. Для сохранения водопропускной способности сооружаемых каналов необходимо приобретение специальной техники (гидромониторного или роторного типов) для очистки русел каналов и проток от зарастания корневой системой камыша.
- 4. Представленный в плане «Мероприятия по водообеспечению» вариант строительства насосной станции для водоподачи из реки Вахш в озерную систему заповедника следует отнести на более поздние сроки. Место строительства будет уточнено после ввода в эксплуатацию каскада Сангтудинских ГЭС, Рогунской ГЭС и стабилизации местоположения русла реки Вахш.