
ҚМПИ ЖАРШЫСЫ №1 (53), 2019 ВЕСТНИК КГПИ №1 (53), 2019
ISSN 2310-3353 ISSN 2310-3353

30

HTML-теги, вы можете вставлять различную текстовую, графическую, аудио, видеоинформацию и
интерактивные игры на страницы электронных приложений. Интерактивные кнопки позволяют
просматривать каждую страницу приложения в отдельности. При разработке мультимедийных
инструментов развиваются творческие качества ученика и повышаются его компьютерные на-
выки. Изучая компьютерные технологий, студент станет высококвалифицированным специалис-
том со знанием компьютерной грамотности. Он готовит себя к будущим навыкам работы на
компьютере в своей работе в качестве будущего профессионала.

В данной статье приводится результат творческой работы над проектом, которая прошла
в рамках курса «Информационные и коммуникационные технологии», является актуальной темой в
подготовке специалистов педагогического направления.

Ключевые слова: графика, цвета, инструмент, нарисованный, Inkscape, HTML, веб-стра-
ницы, теги.

УДК 004.422.81

Salykova, O.S.
c. t. s., associate professor of Software Department,
KSU named after A. Baytursynov
Ivanova, I.V.
c. p. s., docent of Software Department,
KSU named after A. Baytursynov
Zhiyenbayeva, A.A.
2nd year master student of specialty
«6M070400 – Computer Engineering and Software»,
KSU named after A. Baytursynov
Tuletaev, E.S.
2nd year master student of specialty
«6М072400 – Technological Machines and Equipment»,
KSU named after A. Baytursynov,
Kostanay, Kazakhstan

FEATURES OF USING REST-ARCHITECTURE

FOR DEVELOPMENT OF CLIENT-SERVER APPLICATIONS

Abstract
This article considers features of using REST-architecture for development

of client-server applications. HTTP client libraries for Java programming langua-
ge and examples of creating GET and POST requests on Java are given. The main
principles of working with Restlet framework for development of applications on
Java programming language are provided.

Key words: REST-architecture, client-server application, HTTP, Restlet,
Java programming language.

1 Introduction
Nowadays, there are a lot of ways to create client-server applications, and one of the wide-

spread one is REST API. REST is a style of software architecture for distributed hypermedia
systems; that is, systems in which text, graphics, audio, and other media are stored across a network
and interconnected through hyperlinks. It stands for REpresentation State Transfer, which requires
clarification because the central abstraction in REST – the resource – does not occur in the acro-
nym. A resource in the RESTful sense is anything that has an URI; that is, an identifier that satisfies
formatting requirements. The formatting requirements are what make URIs uniform. Recall, too,
that URI stands for Uniform Resource Identifier; hence, the notions of URI and resource are
intertwined.

ЭМПИРИКАЛЫҚ ЗЕРТТЕУЛЕР ЭМПИРИЧЕСКИЕ ИССЛЕДОВАНИЯ

31

2 Materials and methods
In a RESTful request targeted at a resource, the resource itself remains on the service

machine. The requester typically receives a representation of the resource if the request succeeds. It
is the representation that transfers from the service machine to the requester machine. In different
terms, a RESTful client issues a request that involves a resource, for instance, a request to read the
resource. If this read request succeeds, a typed representation (for instance, text/html) of the
resource is transferred from the server that hosts the resource to the client that issued the request.
The representation is a good one only if it captures the resource’s state in some appropriate way.

In summary, RESTful web services require not just resources to represent but also client-
invoked operations on such resources. At the core of the RESTful approach is the insight that
HTTP, despite the occurrence of Transport in its name, is an API and not simply a transport proto-
col. HTTP has its well-known verbs, officially known as methods. Table 1 shows the HTTP verbs
that correspond to the CRUD (Create, Read, Update, Delete) operations so familiar throughout
computing.

Table 1 – HTTP verbs and CRUD operations

Although HTTP is not case-sensitive, the HTTP verbs are traditionally written in uppercase.
There are additional verbs. For example, the verb HEAD is a variation on GET that requests only
the HTTP headers that would be sent to fulfill a GET request. There are also TRACE and INFO
verbs.

Picture 1 is a whimsical depiction of a resource with its identifying URI, together with a
RESTful client and some typed representations sent as responses to HTTP requests for the resource.
Each HTTP request includes a verb to indicate which CRUD operation should be performed on the
resource. A good representation is precisely one that matches the requested operation and captures
the resource’s state in some appropriate way. For example, in this depiction a GET request could
return my biography as a hacker as either an HTML document or a short video summary. The video
would fail to capture the state of the resource if it depicted, say, only the major disasters in my
brother’s career rather than those in my own. A typical HTML representation of the resource would
include hyperlinks to other resources, which in turn could be the target of HTTP requests with the
appropriate CRUD verbs.

HTTP also has standard response codes, such as 404 to signal that the requested resource
could not be found, and 200 to signal that the request was handled successfully. In short, HTTP pro-
vides request verbs and MIME types for client requests and status codes (and MIME types) for
service responses.

Modern browsers generate only GET and POST requests. Moreover, many applications treat
these two types of requests interchangeably. For example, Java HttpServlets have callback methods
such as doGet and doPost that handle GET and POST requests, respectively. Each callback has the
same parameter types, HttpServletRequest (the key/value pairs from the requester) and
HttpServletResponse (a typed response to the requester). It is common to have the two callbacks
execute the same code (for instance, by having one invoke the other), thereby conflating the original
HTTP distinction between read and create. A key guiding principle of the RESTful style is to
respect the original meanings of the HTTP verbs. In particular, any GET request should be side
effect-free (or, in jargon, idempotent) because a GET is a read rather than create, update, or delete
operation. A GET as a read with no side effects is called a safe GET.

ҚМПИ ЖАРШЫСЫ №1 (53), 2019 ВЕСТНИК КГПИ №1 (53), 2019
ISSN 2310-3353 ISSN 2310-3353

32

Picture 1 – A small slice of a RESTful system

The REST approach does not imply that either resources or the processing needed to gene-

rate adequate representations of them are simple. A REST-style web service might be every bit as
subtle and complicated as a SOAP-based service. The RESTful approach tries to simplify matters
by taking what HTTP, with its MIME type system, already offers: built-in CRUD operations, uni-
formly identifiable resources, and typed representations that can capture a resource’s state. REST as
a design philosophy tries to isolate application complexity at the endpoints, that is, at the client and
at the service. A service may require lots of logic and computation to maintain resources and to
generate adequate representation of resources – for instance, large and subtly formatted XML
documents – and a client may require significant XML processing to extract the desired information
from the XML representations transferred from the service to the client. Yet the RESTful approach
keeps the complexity out of the transport level, as a resource representation is transferred to the
client as the body of an HTTP response message. By contrast, a SOAP-based service inevitably
complicates the transport level because a SOAP message is encapsulated as the body of a transport
message; for instance, an HTTP or SMTP message. SOAP requires messages within messages,
whereas REST does not [1, p. 123].

3, 4 Results and discussions
HTTP client libraries for Java programming language.
The Java standard library comes with an HTTP client, java.net.HttpURLConnection. You

can get an instance by calling open on a java.net.URL object. Though it supports most of the basic
features of HTTP, programming to its API is very difficult [2, p. 34]. The Apache Jakarta project
has a competing client called HttpClient, which has a better design. There’s also Restlet. It’s also an
HTTP client library. The class org.restlet.Client makes it easy to make simple HTTP requests, and
the class org.restlet.data.Request hides the HttpURLConnection programming necessary to make
more complex requests. Table 2 lists the features available in each library.

Table 2 – HTTP feature matrix for Java HTTP client libraries

ЭМПИРИКАЛЫҚ ЗЕРТТЕУЛЕР ЭМПИРИЧЕСКИЕ ИССЛЕДОВАНИЯ

33

Now, let’s consider an example of connection a client on Java with REST API. Apache
HTTP Client makes the request processing simpler, and in case of using Maven (a build automation
tool used primarily for Java projects) it is possible to write following XML:

<dependency>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
<version>4.3.6</version>
</dependency>
A REST API client uses the GET method in a request message to retrieve the state of a

resource, in some representational form. A client’s GET request message may contain headers but
no body [3, p. 24].

Here is an example for GET requests:
public class Test {

public static void main(String[] args) throws ClientProtocolException, IOException {
HttpClient client = new DefaultHttpClient();
HttpGet request = new HttpGet("http://restUrl");
HttpResponse response = client.execute(request);
BufferedReader rd = new BufferedReader (new
InputStreamReader(response.getEntity().getContent()));
String line = "";
while ((line = rd.readLine()) != null) {
System.out.println(line);
}

}
}

Clients use POST when attempting to create a new resource within a collection. The POST
request’s body contains the suggested state representation of the new resource to be added to the
server-owned collection [3, p. 26].

An example for POST requests:
public class Test {

public static void main(String[] args) throws ClientProtocolException, IOException {
HttpClient client = new DefaultHttpClient();
HttpPost post = new HttpPost("http://restUrl");
List nameValuePairs = new ArrayList(1);
nameValuePairs.add(new BasicNameValuePair("name", "value"));
post.setEntity(new UrlEncodedFormEntity(nameValuePairs));
HttpResponse response = client.execute(post);
BufferedReader rd = new BufferedReader(new
InputStreamReader(response.getEntity().getContent()));
String line = "";
while ((line = rd.readLine()) != null) {
System.out.println(line);
}

}
}

As the REST design philosophy becomes more popular, new frameworks are springing up to
make RESTful design easy. Existing frameworks are acquiring RESTful modes and features. This,
in turn, drives additional interest in REST [2, p. 339].

ҚМПИ ЖАРШЫСЫ №1 (53), 2019 ВЕСТНИК КГПИ №1 (53), 2019
ISSN 2310-3353 ISSN 2310-3353

34

The Restlet Framework. Several web frameworks have embraced REST, perhaps none
more decisively than Rails with its ActiveResource type, which implements a resource in the
RESTful sense. Rails also emphasizes a RESTful style in routing, with CRUD request operations
specified as standard HTTP verbs. Grails is a Rails knockoff implemented in Groovy, which in turn
is a Ruby knockoff with access to the standard Java packages. Apache Sling (http://incuba-
tor.apache.org/sling/site/index.html) is a Java-based web framework with a RESTful orientation [1,
p. 186].

The Restlet framework (http://www.restlet.org) adheres to the REST architectural style and
draws inspiration from other lightweight but powerful frameworks such as Net-Kernel
(http://www.1060.org) and Rails. As the name indicates, a restlet is a RESTful alternative to the
traditional Java servlet. The restlet framework has a client and a service API. The framework is well
designed, relatively straightforward, professionally implemented, and well documented. It plays
well with existing technologies. For example, a restlet can be deployed in a servlet container such as
Tomcat or Jetty. The restlet distribution includes integration support for the Spring framework and
also comes with the Simple HTTP engine (http://www.simpleframework.org), which can be
embedded in Java applications.

The Restlet framework provides easy-to-use Java wrappers such as Method, Request,
Response, Form, Status, and MediaType for HTTP and MIME constructs. The framework supports
virtual hosts for commercial-grade applications.

The Restlet download includes a subdirectory RESTLET_HOME/lib that houses the various
JAR files for the restlet framework itself and for interoperability with Tomcat, Jetty, Spring,
Simple, and so forth. For the sample restlet service in this section, the JAR files com.noelios.rest-
let.jar, org.restlet.jar, and org.simpleframework.jar must be on the classpath. A restlet client could
be written using a standard class such as HttpURLConnection.

The Restlet terminology matches the terminology of REST as described in the Fielding the-
sis: resource, representation, connector, component, media type, language, and so on.

Restlet adds some specialized classes like Application, Filter, Finder, Router, and Route, to
make it easier to combine restlets with each other, and to map incoming requests to the resources
that ought to handle them.

The central concept of Restlet is the abstract Uniform class, and its concrete subclass
Restlet. As the name implies, Uniform exposes a uniform interface as defined by REST. This inter-
face is inspired by HTTP’s uniform interface but can be used with other protocols like FTP and
SMTP. The main method is handle, which takes two arguments: Request and Response. As it can
be seen from Picture 2, every call handler that is exposed over the network (whether as client or
server) is a subclass of Restlet – is a restlet – and respects this uniform interface. Because of this
uniform interface, restlets can be combined in very sophisticated ways.

Picture 2 – The Restlet class hierarchy

ЭМПИРИКАЛЫҚ ЗЕРТТЕУЛЕР ЭМПИРИЧЕСКИЕ ИССЛЕДОВАНИЯ

35

Every protocol that Restlet supports is exposed through the handle method. This means
HTTP (server and client), HTTPS, and SMTP, as well as JDBC, the file system, and even the class
loaders all go through handle. This reduces the number of APIs the developer must learn. Filtering,
security, data transformation, and routing are handled by chaining together subclasses of Restlet.
Filters can provide processing before or after the handling of a call by the next restlet. Filter
instances work like Rails filters, but they respond to the same handle method as the other Restlet
classes, not to a filter-specific API.

A Router restlet has a number of Restlet objects attached to it, and routes each incoming
protocol call to the appropriate Restlet handler. Routing is typically done on some aspect of the
target URI, as in Rails. Unlike Rails, Restlet imposes no URI conventions on your resource hierar-
chies. You can set up your URIs however you want, so long as you program your Routers appro-
priately.

Routers can stretch beyond this common usage. You can use a Router to proxy calls with
dynamic load balancing between several remote machines! Even a setup as complex as this still
responds to Restlet’s uniform interface, and can be used as a component in a larger routing system.
The VirtualHost class (a subclass of Router) makes it possible to host several applications under
several domain names on the same physical machine. Traditionally, to get this kind of feature
you’ve had to bring in a front-end web server like Apache’s httpd. With Restlet, it’s just another
Router that responds to the uniform interface.

An Application object can manage a portable set of restlets and provide common services. A
“service” might be the transparent decoding of compressed requests, or tunneling methods like PUT
and DELETE over overloaded POST using the method query parameter. Finally, Component
objects can contain and orchestrate a set of Connectors, VirtualHosts, and Applications that can be
run as a standalone Java application, or embedded in a larger system such as a J2EE environment.

5 Conclusions
In conclusion, it should be noted that REST API is one of the best ways to develop client-server
applications, because of its easiness to understand and use in the process of creating web
applications, mobile applications and other kinds of client-server based software. The restlet fra-
mework is a quick study. Its chief appeal is its RESTful orientation, which results in a lightweight
but powerful software environment for developing and consuming RESTful services. The chief
issue is whether the restlet framework can gain the market and mind share to become the standard
environment for RESTful services in Java. The Jersey framework has the JSR seal of approval,
which gives this framework a clear advantage.

References
1 Kalin M. Java Web Services: Up and Running. – O’Reilly Media, Inc., 2009. – 300 p.
2 Richardson L., Ruby, S. RESTful Web Services. – O’Reilly Media, Inc., 2007. – 422 p.
3 Massé M. REST API Design Rulebook. – O’Reilly Media, Inc., 2012. – 96 p.

Article was received by the editorial office: 20.12.2018

САЛЫКОВА, О.С., ИВАНОВА, И.В., ЖИЕНБАЕВА, А.А., ТУЛЕТАЕВ, Е.С.
КЛИЕНТ-СЕРВЕРЛІК ҚОСЫМШАЛАРДЫ ЖАСАУ БАРЫСЫНДА REST-АРХИТЕКТУРА-

СЫН ҚОЛДАНУ ЕРЕКШЕЛІКТЕРІ
Берілген мақалада клиент-серверлік қосымшаларды жасау үшін REST-архитектурасын қол-

дану ерекшеліктері қарастырылған. Java бағдарламалау тіліне арналған HTTP клиент кітапхана-
лары мен Java-да GET жəне POST сұрауларын жасау мысалдары келтірілген. Java бағдарламалау
тілінде қосымшалар жасауға арналған Restlet фреймворкының жұмыс принциптері көрсетілген.

Кілт сөздер: REST-архитектурасы, клиент-серверлік қосымша, HTTP, Restlet, Java бағдарла-
малау тілі.

ҚМПИ ЖАРШЫСЫ №1 (53), 2019 ВЕСТНИК КГПИ №1 (53), 2019
ISSN 2310-3353 ISSN 2310-3353

36

САЛЫКОВА, О.С., ИВАНОВА, И.В., ЖИЕНБАЕВА, А.А., ТУЛЕТАЕВ, Е.С.
ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ REST-АРХИТЕКТУРЫ ДЛЯ РАЗРАБОТКИ КЛИЕНТ-

СЕРВЕРНЫХ ПРИЛОЖЕНИЙ
В данной статье рассматриваются особенности использования REST-архитектуры для

разработки с клиент-серверными приложениями. Приведены клиент библиотеки HTTP для языка
программирования Java, а также примеры создания GET и POST запросов на Java. Представлены
основные принципы работы фреймворка Restlet для разработки приложений на языке
программирования Java.

Ключевые слова: REST-архитектура, клиент-серверное приложение, HTTP, Restlet, язык
программирования Java.

УДК 796.012

Сивохин, И.П.
доктор педагогических наук,
главный специалист по научной деятельности,
КГПУ, Костанай, Казахстан
Огиенко, Н.А.
кандидат педагогических наук,
зав. кафедрой ТиПФКиС, КГПУ, Костанай
Бекмухамбетова, Л.С.
магистр экономических наук,
преподаватель кафедры ТиПФКиС,
КГПУ, Костанай, Казахстан
Маткаримов, Р.М.
кандидат педагогических наук, профессор,
заведующий кафедрой ТиМТАВиКС, УГУФКиС,
Ташкент, Узбекистан.

БИОМЕХАНИЧЕСКИЕ АСПЕКТЫ СОВЕРШЕНСТВОВАНИЯ

ДВИГАТЕЛЬНЫХ ДЕЙСТВИЙ В СПОРТЕ

Аннотация
Для регистрации траектории движения штанги и расчета кинема-

тических и динамических показателей был использован специализированный
аппаратно-программный комплекс и соответствующее программное обеспе-
чение. В исследовании приняли участие спортсмены высокой квалификации
(n=13). Анализ полученных биомеханических показателей техники толчка
штанги от груди позволил выявить факторы, влияющие на эффективность
двигательного действия. На основе полученных данных была разработана
инновационная программа совершенствования двигательного действия и
проверена в ходе педагогического эксперимента (n=5) с использованием
биомеханического контроля.

Ключевые слова: тяжелая атлетика, биомеханический контроль,
техника толчка штанги от груди, статистический анализ, факторный
анализ, совершенствование технического мастерства.

1 Введение
Актуальность исследования. Совершенствование двигательных действий и техничес-

кого мастерства тяжелоатлетов связано с применением различных современных инструмен-
тальных методик объективного контроля, которые необходимы для получения точных коли-
чественных показателей биомеханической структуры двигательных действий спортсменов,

