
Kostanay State Pedagogical Institute

Science and Mathematical Faculty

Informatics and Computer Technologies Department

A.D.Tsyganova

V.V. Danilova

ALGORITHMIZATION AND PROGRAMMING

Study Manual

for students of the specialty

5В011100 «Informatics»

Kostanay

2018

 2

UDC 004 (075.8)

BBC 32.973-018 я 73

T 94

Authors: Tsyganova A.D., senior lecturer of the department of informatics

and computer technologies, docent of KSPI

 Danilova V.V., doctor of philosophy (PhD), candidate of

pedagogical sciences, senior lecturer of the Department of the

foreign languages, KSPU

Reviewers: Sukhov M.V., candidate of technical sciences, the dean of the

Science and Mathematical Faculty, KSPU

Ismailov A.O., candidate of technical sciences, docent of the

department of software, KSU after A.Baytursynov

Tsyganova A.D.

T 94 Algorithmization and programming: study manual for students of

specialties 5В011100 Informatics. A.D. Tsyganova, V.V. Danilova – Kostanay.:

КSPU, 2018. – 99 p.

ISBN 978-601-7934-52-1

The manual is written in accordance with the requirements of the State Program for the

Development of Education and Science of the Republic of Kazakhstan for 2016-2019 - a

phased transition of the formation of the Republic of Kazakhstan to a trilingual education and

is intended for students of polyglot groups of specialty 5B011100 "Informatics".

This manual is a guide to mastering the skills of developing and implementing

algorithms for solving problems in the programming environment in English. At the

beginning of each topic, the manual contains the necessary theoretical material; an analysis of

the solution of demonstration examples is conducted, the methodology for developing

algorithms for solving these examples accompanied by the listing of ready-made programs or

basic program fragments, is considered; made a selection of interesting practical tasks for the

independent decision on each topic in the required volume given guidance, methodological

recommendations for solving tasks. Particular attention is paid to the topics: procedural-

modular programming technology, input-output data files, algorithms on graphs.

UDC 004 (075.8)

BBC 32.973-018 я 73

Approved by the Academic Council of the Kostanay State Pedagogical Institute

Protocol No7 dated 31.05.2018.

ISBN 978-601-7934-52-1 ©КSPU, 2018

©Tsyganova A.D., Danilova V.V., 2018

 3

CONTENTS

Introduction……………………………………………………………….. 4

1 General information on the programming language Pascal ………… 6

 1.1 Structure of the program in Pascal language ………………….. 6

 1.2 Programming environment ………………………………………. 8

 1.3 Standard data types. Variables, constants ………....................... 11

 1.4 Debugging the program ……….. 15

 1.5 Standard numeric functions …………………………………… 16

2 Fundamentals of programming in the environment of Pascal ……. 18

 2.1 Programming linear algorithms ………………………………… 18

 2.2 Programming of branching algorithms ………………………… 20

 2.3 Programming of cyclic algorithms …...………………………… 25

 2.3.1 Cycle with parameter.…………………………………… 25

 2.3.2 Cycles with the condition ……………………………..... 28

 2.4 Procedural-modular technology for solving problems ……… 31

 2.4.1 Procedures ……………………………………………… 31

 2.4.2 User functions …………………………………………. 34

 2.4.3 Recursion ………………………………………………. 36

3 Types and Structures of Data …………………………..……………. 38

 3.1 File data type …………………………………………………. 38

 3.2 Linear arrays ……….…………………………………………. 40

 3.2.1 Search in an array …………………………………….. 44

 3.2.2 Shifts, reversal, and sorting of an array...……………… 45

 3.3 Two-dimensional arrays ……………………………………… 52

 3.3.1 Square matrix …………….……………………………. 53

 3.3.2 Processing two-dimensional arrays...……………………. 57

 3.4 Line data type ………………………………………………… 61

 3.5 Enumerated data type ……………...…………………………. 66

 3.6 Sets …………………………….. …………………………….. 67

 3.7 Graph model of the algorithm ………………………………… 70

4 Standard Modules ………… ……………………………………….. 79

 4.1 Text screen mode …………………………………………….. 79

 4.2 Graphical display mode ….…………………………………… 80

 4.2.1 Text output in graphical mode …………………………. 86

 4.2.2 Creating function graphs ……………………………… 87

 4.2.3 Modeling the movement of objects …………………… 96

The list of references …………………………………………………….. 99

 4

INTRODUCTION

Algorithmization and programming are the most important sections of

computer science, allowing to form logical thinking, system, operational

approach to solving problems of a different nature and complexity.

The programs for the first computers were written in the language of the

machine instructions and represented binary numbers. The set of such

commands was determined only by the capabilities of the processor used.

Although the commands were quite primitive, they could be used to describe

any algorithm. Of course, to solve a complex problem, recording a program

becomes very cumbersome.

Simplifying the text of the program means to simulate a more powerful

language. This direction has led to the abundance of programming languages

that we currently have.

Initially, programmers often simply rewrote repetitive actions in a notebook

for further use. Thus, even in the forties, the idea of using subprograms began to

appear. Over time, there were special programs (linkers), which, according to a

special code, could write to the specified place of RAM the required subroutine

stored in the library of subroutines.

At the same time, the presentation of programs changed. Instead of machine

codes, the symbols developed for them began to be written down. Instead of

numbers of memory cells, where the data was stored, they began to use

symbolic names - the notion of a variable appeared.

Over time, subroutines began to give meaningful names, it became possible

to write numerical expressions in a form familiar to everyone. The first high-

level languages appeared. Their main distinguishing features from low-level

languages were the description of algorithms quite close to the natural language.

Although there are currently thousands of programming languages, they all

have something in common. Each language consists of three components:

alphabet, syntax and semantics.

An alphabet is a set of symbols used in a given language.

Syntax is a set of rules for constructing constructs in a language. Syntax

sometimes includes the alphabet of the language. There are different ways of

describing the language. The most common of these are syntax diagrams and the

extended Backus-Naur form (EBNF).

Semantics is the semantic interpretation of each syntactic construction in a

language. If syntactic errors can be detected by a language translator, then the

responsibility for the semantic errors lies entirely with the programmer.

Currently, there is no generally accepted strict classification of

programming languages. Some conditionally share all languages in levels - low

and high. High-level languages can be declarative (Prolog, Lisp) and procedural-

oriented (C / C ++, Pascal, Ada). Procedural languages evolve into object-

oriented languages. The classification of programming languages into

educational and professional languages is also highlighted. Now such a

classification is very conventional, since most languages have become universal.

Programming languages continue to evolve. One of the programming languages

 5

used in education is Pascal. It was developed in 1968-1970 by the Swiss

scientist Niklaus Wirth. Pascal initially was not widely used, although it served

as the basis for the development of other languages (Modula-2, Ada). Only with

the advent of its expansion in the 1980s - the Turbo-Pascal language for IBM, it

gained popularity. The first version of Turbo Pascal appeared in 1983, and

already in 1984 it was replaced by the second version, by the autumn of 1986 a

third version appeared, more convenient in operation. The fourth version (1988)

introduced Turbo Pascal in a new form (the emergence of a new environment,

the compiler became built-in). In the autumn of the same year, the fifth version

was developed, which had a built-in debugger, and in 1989, version 5.5

appeared, which allowed switching to object-oriented programming. The sixth

version provided multi-window and multi-file mode, the use of "mouse", the use

of object-oriented programming, had built-in assembler. In 1992, Borland

International released two programming packages in Pascal language: Borland

Pascal 7.0 and Turbo Pascal 7.0. It was declared for the official programming

language for high school students in the United States intending to specialize in

computer technology and programming at American universities, has been and

remains one of the most popular programming languages used in programming

contests at various levels.

The first programming language must be required to be studied by the

student. It is necessary that the student has a clear idea of what his program does

at each step, and be able to write down algorithms in a strict formal language.

The more error messages students see from the compiler, and the more of these

messages they understand, the more fundamental knowledge about

programming they will receive. Pascal has these properties. It is especially

important that in it there is a check on whether the array index belongs to an

admissible set of values. This is very useful for schoolchildren. But Pascal is

rarely used in practice, and the specialist in pascal is not much in demand in the

labor market; for real work it is necessary to learn a more popular language

(Java, C / C ++, PHP, etc.).

 6

 1 General information on the language of Pascal

1.1 Structure of the programme on Pascal language

Language Pascal is an algorithmic language, i.e. the correct program in this

language is a formal record of some algorithm, a finite sequence of actions

leading to the solution of a certain problem. In accordance with this principle,

the Pascal program consists of two parts: a description of the sequence of

actions to be performed and descriptions of the data with which the operations

work.

In general, the structure of the Pascal program is as follows:
{I. Title of the programme}

program <name of the programme>;

{II. Section indicating the used modules}

uses <the list of modules>;

{III. Section of descriptions}

lаbеl <description of labels>;

type <description of types>);

const <description of constants>;

var <description of variables>;

procedure <description of procedures>;

function <description of functions>);

{V. Section of operators}

begin

<operators>

end.

The title of the programme in the environment of Pascal is not obligatory.

The section for specifying used modules begins with the keyword Uses and

is also an optional section. It is used in cases when the program requires

constants, types, variables, procedures and functions defined in other modules,

except the System module.

The standard System module is used by default everywhere and you do not

need to specify it in the Uses clause. This module supports tools such as file

based Input / Output, handling of lines, floating point operations, dynamic

memory allocation, and etc.

The description section, just like the previous sections, is optional in the

program.

Tags can precede any operator of the program and are separated from the

operators by a colon. Labels are used together with Goto jump operators, where

the label is written without a colon:
label 1,а;

....

goto 1;

1:y:=y+1;

Using labels and Goto operators in most cases contradicts the principles of

structured programming and therefore it is recommended to avoid using these

 7

constructs in programs without special need. Many types of Pascal can be

divided into two groups:

1) standard (predefined) types;

2) user-defined types (user-based types).

The names of standard types are predefined by identifiers, which are

described in the standard System module, which by default is connected to the

list of used modules of each program and each user module.

Custom types are the additional abstract types, the characteristics of which

can be defined by the programmer independently.

Variables description introduces a set of data with which actions are

performed in the operating unit. The variable is denoted by the identifier; its

type is associated with each variable, which defines the set of valid values for

this variable and the set of permissible operations.

An identifier is a name freely chosen by the programmer for program

elements (procedures, functions, constants, variables and data types), formed

from letters and digits.

The description of a procedure or function defines a part of the program as a

separate syntactic unit and associates a name with it. Actions contained in a

procedure or function can be performed ("called") by specifying its name.

The section of operators is the only mandatory section in the program structure.

 The simplest program can look like:
Begin

Writeln('Hello, friend!');

End.

The Pascal alphabet consists of the following characters:

- upper and lowercase Latin letters and the underscore A, B, C, ..., X,

Y, Z, a, b, c, ..., x, y, z, _ - to form identifiers and service words;

- Arabic numerals 0, 1, 2 9 - for writing numbers and identifiers;

- special characters + - * / = < >,. ; : @ '() [] { } # $ ^ for constructing

the signs of operations, expressions, comments.

An expression is a formal rule for computing a certain value. Expressions

are constructed from operands, operation characters, and parentheses. Operands

are "elementary" values: variables, fields of records, array elements, function

calls, etc.

 When writing numeric expressions in Pascal, the following arithmetic

operations are used:

 + addition

 - subtraction

 * multiplication

 / division

Div - integer division

Mod - remainder of the division

When calculating the value of a numerical expression, operations are

performed in decreasing order of priority. The brackets in the expression are

used to change the normal order of processing operations.

 8

Div and Mod operations are applied only to operands of the whole type.

Variables in the Pascal program are information objects designed to store values

of a certain type. Within a given type, a variable can have any value that

changes during the execution of the program.

Objects that are externally similar to variables, but which cannot change

their value, are called constants:
const

а=1;

b=1000;

maxreal=1.7e38;

pi=3.14;

min=0;

max=100;

center=(max-min) div 2;

message=’out of memory’;

Operators of the Pascal language are divided into two groups:

1) simple operators;

2) structural operators.

Operators are separated from each other by a delimiter (;) ; it is not part of

the operator, therefore, after the last statement of the program and after the last

statement in the compound statement, it is not necessary to put a semicolon

before the service word End.

Simple operators include:

-operator of assignment;

-operator of a procedure call;

-operator of the transition.

Structural operators include:

- compound operator;

- conditional operator;

- cycle operators;

- connection operator.

In the program, the most commonly used is the assignment operator

variable: = expression;

The execution of the assignment operator results in the calculation of the

value determined by the expression and the assignment of this value to the

variable.

1.2 The programming environment

After launching the Free Pascal programming environment, the appearance

of the screen will be as shown in Figure 1.1.

 9

Figure 1.1 Appearance of the screen in the Free Pascal environment

The bottom line of the screen is a string of prompts. Its contents change

depending on the actions performed. This line lists the most commonly used

keys.

The top line of the screen is the main menu of the integrated environment.

Each element of this menu is another menu (submenu).

Main menu.

The F10 key is used to exit to the main menu. Clicking it, you will see that

one of the menu items (when the first click is the File submenu) acquires a green

background. From the main menu, you can move using the left and right arrow

keys (or with the mouse).

To select the desired submenu, press Enter. If at some point you work with

the menu, you decide to abandon the selected actions, you will need to press the

Esc key.

Create a new program. Press F10 to exit to the Main menu. Select the File

menu. A submenu will appear, shown in Figure 1.2.

 10

Figure 1.2 The main menu of the program

Then select New (File-New). A new window with the title Noname 00.pas

should appear on the screen. The title of the window shows the file in which the

program text is stored. In the Pascal environment, you can edit several programs

at the same time, the text of each of them will be located in a separate window.

 Saving the program. To save the program, select the File-Save or File-

Save as ... menu item. In the first case, the program is saved under a name that

coincides with the title of the corresponding window. In the second case, a

dialog box appears where under the Save as ... line, specify a new file name and

press Enter.

Instead of selecting File-Save, you can simply press F2. These keys are

called "hot". They are usually indicated next to the corresponding menu item

and serve for quicker access to the desired menu item.

Loading the program. To download the program, select the menu

command File-Open (or press the F3 hotkey). In the dialog box that appears,

type the name of the file in the Name line or move to the file list with the Tab

key and select the desired file.

Working with windows. The Free Pascal environment allows you to

simultaneously edit several programs or even ordinary text files. In order to go

to the desired window, you can press the Alt + number keys or move from one

window to another until the desired one appears, using the F6 key. In the

environment of modern versions of Pascal, it is possible to change the

configuration of windows. After pressing the key combination Ctrl + F5, you

can use the arrow keys to change the size of the current window or, with the

same keys while holding down the Shift key, move the window to the desired

place on the screen. To return to editing mode, press Esc or Enter.

While working in the environment, some windows or parts of them may

overlap with other windows. To make all windows visible, select Window-Tile

from the menu.

 11

Compiling of the program. To compile the program, you must set the

Destination menu item. There are two possible values: Memory and Disk. Each

time this menu item is selected, its value changes to the opposite. Next, select

the Compile-Compile menu item (or press Alt + F9).

Starting the program. To start the program, you need to press Ctrl + F9 or

select Run-Run from the menu. In this case, the program is compiled first, and

then, if there are no errors, it is launched. After the program is finished, the

integrated environment returns to the editing mode. In order to view the results

of the program execution, you have to press Alt + F5, and to return to edit mode,

press any key.

If an error occurs during the compilation process, a corresponding message

is displayed and the cursor moves to the intended place of the program where

this error is allowed.

Editing the program. When editing, insert and substitute modes are

distinguished (switching with the Insert key).

Exit from Turbo Pascal. To exit the environment, select the File-Exit

menu item or press Alt + X.

1.3 Standard data types. Variables. Constants

Any variable is characterized by its type in Pascal. A type is understood as

the set of values that a variable can take, and the set of operations allowed on a

given variable.

Pascal is a typed, or static language. This means that the type of the variable

is determined when it is described. A variable can only participate in operations

allowed by a type.

Pascal has a developed system of types. Based on a small number of

standard types, a programmer can construct data of arbitrary structure and

complexity.

The basic types in the type system are simple types. Simple types are

divided into ordinal and real data types. An ordinal type is a data type whose

range of values is an ordered countable set. In any ordinal type, for every value

except the first, there is a previous value, and for each value, except the last,

there is a subsequent value.

There are standard functions that allow determining the corresponding

values for a given value in Pascal,:

- the function Pred (x) determines the value preceding x;

- the function Succ (x) determines the value following x;

- the Ord (x) function returns the ordinal number of x.

Whole types

This group of types denotes sets of integers in different ranges.

 12

The integer

type

Value range Memory

size

Shortint -128..127 1 byte

Integer -32768…32767 2 bytes

Longint -2147483648…2147483647 4 bytes

Byte 0…255 1 byte

Word 0..65535 2 bytes

The following operations with integer values are allowed:

When applied to integer values, all the operations listed (except for division)

give the whole result. The division operation always yields a real result.

Real types

This group of types denotes sets of real values in different ranges:

Type Value range Number of digits of

mantissa

Memory size

Real 2.9e-39…1.7e38 11-12 6 bytes

Single 1.5e-45…3.4e38 7-8 4 bytes

Double 5.0e-324…1.7e308 15-16 8 bytes

Extend 3.4e-4932…1.1e4932 19-20 10 bytes

Comp -2e+63…+2e63-1 19-20 8 bytes

Real values can be represented in a fixed-point and floating-point form. The

fixed-point number is represented by a decimal number with a fractional part:

127.3, 17.384, 25.0, 0.54.

The floating-point number has the form tem, where ‘m’ is the mantissa, and

‘p’ is the order of the number. As ‘m ‘. there can be integers and real numbers

with a fixed point, as p - only integers. Both the mantissa and the order can

contain the symbols like «+» and «-»: 9е-6, 0.62е + 4, -10.8е12, 20е-3.

There are many standard functions for working with real numbers in Pascal.

The most commonly used ones are:

+ Addition

- Subtraction

* Multiplication

/ Division

Div Integer division

Mod Calculation of the remainder integer division

 13

Logical type

Variables of a logical type usually get the values False and True as a result

of performing comparison operations (relations): "<" (less), ">" (more), "<="

(less or equal), "> = "(Greater than or equal to)" <> "(not equal to)," = "(equal

to).

The result of the relation operation is true if the relation is satisfied for the

values of its operands, and false - otherwise.

There are logical operations applied to variables of a logical type in the

language of Pascal.

Values

операндов

The result of the operation

x y not x x and y x or y x xor y
False False True False False False

False True True False True True

True False False False True True

True True False True True False

The following priority of operations is accepted:

 l. Not

 2. And,*,/,Div,Mod

 3. Or,Xor,+,-

 4. Relation operations.

Symbolic type

The character type data is described using the Char ID. The value of a

character-type variable is a character from the set of ASCII (American Standard

Code for Information Interchange). This set consists of 256 different characters

arranged in a certain way.

Abs (х) Absolute meaning (module) х
Sqr(x) square х
Sqrt (x) Square root of х
Sin(x) sinus х
Cos(x) cosinus х
Arctan

(x)

Arctangens х
Exp (x) eх

Ln(x) Natural logorythm х
Trunc(x)

(x)

Truncation х
Round(x)

(x)

Integer round to х (rounding)

 14

Limited and enumerated types

A bounded (interval) data type is an interval of values of an ordinal type, called

a base type. Type descriptions specify the smallest and largest values that are

included in this interval.

Example: var a:1..15; b:'a'..'z';

Variables ‘a’ and ‘b’ can take values only from the specified interval; The

base type for the variable a is the whole type, and for the variable b, the

character type. Enumerations allow the programmer to describe new types of

data, the values of which are determined by the programmer himself. The

description of the enumerated type consists of a list of its elements enclosed in

parentheses.

For example:
Var WeekDay: (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

Defining variables

Any variable used in a Pascal program must be defined, and the variable

definition must precede its first use.

For example:
Var a:Integer;

 Index:0..5;

 s,р:Char;

 Sinus:Real;

Constants

Pascal allows the introduction of objects that look like variables, but which

cannot change their meaning. Such objects are called constants. The description

of constants begins with the service word const, followed by a sequence of

definitions of constants.

In the simplest case, a constant is a number, a line, a symbol, or a Boolean

expression:
 Const {number constants}

Length=100;

Min=-1;

Мах=-32678;

Numb=7.87e-3;

{Boolean constants}

Boll=true;

Bol2=false;

{symbolic constants}

Char7='7';

{line constants}

Strl='Turbo';

Str2='Pascal';

 15

Exercises

1. Two real numbers are entered from the keyboard. Output the result of

their work is in the form of equality. For example, for the entered

numbers 5 and 7, output is: 5 * 7 = 35.

2. The values of two integer variables are entered from the keyboard.

Exchange the contents of these variables:

a) using an additional variable;

b) without an additional variable for the case when the sum of the values

is less than 32767.

3. From the keyboard century and year in the century are entered. Output the

full year designation. For example, for numbers 21 and 4 the output is

2004.

4. A three-digit number is entered from the keyboard. Output the digits of

this number on separate lines.

 1.4 Debugging the programme

During the development of the program, errors of three types may occur.

Compile-time errors occur at compile time, i.e. before the start of the

program. As a rule, they are caused by incorrect recording of syntactic

constructions of the Pascal language.

For example, if you try to start the program
Program Errorl;

Var a,b:Integer;

Begin

a=3;

b:=а*7;

Writekn(b);

End.

The top line of the screen displays a message

" :=" expected (expected ":=").

Putting a colon before the equal sign in the expression a = 3; and trying to

restart the program, you can find the following message:

Unknown identifier (unknown identificator).

And only after changing the letter 'k' to 'l' in the word Writekn the compiler

does not report any errors, and the program is successfully executed.

Both errors are related to compile-time errors. They were discovered by the

compiler before the program was executed.

Run-time errors are detected after compilation, when the program is

already running. For example, compile and run the following program:
program Error2;

var a, b : integer;

begin

write('а=');

readln(a);

b:=а*7;

 16

writeln(b);

end.

When the message 'a =' appears, enter the number 2.5. You receive an error

message

Invalid numeric format and the IDE will return to edit mode.

In this case, the program was written correctly, but during its execution an

attempt was made to write a real number to the integer variable.

Logical / algorithmic errors cannot be detected by the computer. Most

often they are the result of the application of an initially incorrect algorithm or

algorithm, incorrectly written in the programming language. Such errors are

noticed by the result of the program execution, which does not coincide with the

expectation and displays them with the help of test tests.

1.5 Standard numeric functions

Pascal has a number of standard numeric functions that can be used in

algebraic expressions.

The syntax for describing the standard function is:

function name (argument name: argument type): the type of the result of the

function.

Function Activity

Abs(х):

«matches with the type

аргумента»

 Returns the absolute value of the argument

Artcan(x:real):real; Returns the arctangent of the argument - the

value of the angle in radians in the range -

π/2.. π /2

 Cos(x:real):real; Returns the value of argument cos

Exp(x:real):real; Returns the value of the function of argument

еx, где е = 2.718281828

Frac(x:real):real; Returns the fractional part of the argument
Frac(3.17)= 0.17

Frac(-3.85)= 0.15

Frac(x)= х - Int(x)

Int(x:real):real; Returns the integer part of the argument,

gives the largest number not exceeding x,

i.e. is an N such that N <= х < N+1

 Int(2.4)= 2.0

 Int(0.99)= 0.0

 Int(-1.2)= - 2.0

 Int(-3.9)= - 4.0

 17

Ln(x:real):real; Returns the value of the function of the

natural logarithm of the argument
Odd(x:longint):

boolean;

 Checks whether the argument is an odd

number:
Odd(70)= False odd(-21)= True

Pi:real; Returns the value of π, which is equal to

3.1415926535897932385

Pred(x):

«matches with the type of the

argument»

Returns the previous value of the argument

Random(n:word): «matches

with the type of the argument»

Returns a random number from the range

0 <= х < n

Round(x:real):longint; Converts the value of a real type to an integer

type with rounding
Round(3.18)= 3

Round(3.5)= 4

Round(-3.5)= -4

Round(-3.2)= -3

Sin(x:real):real; Returns the value of the sin argument

Sqr(x):

«matches with the type of the

argument»

 Returns the value of the square of the

argument

Sqrt(x:real):real; Returns the value of the square root argument

Succ(x):

«matches with the type of the

argument»

Returns the next argument value Succ(3)=

4 Succ(-12)= - 11

Trunc(x:real):longint; Converts a value of a real type to an integer

type by discarding the fractional part of a

number
Trunc(2.9)=2

Trunc(3.1)=3

Trunc (-3.1)= -3

In Pascal there is no operation of erecting a degree. With an integer value of

the exponent, it can be replaced by multiplication, in the case of a real exponent,

the ratio xy = exp (y * ln (x)) is used to calculate the power of the

number.

 18

2 Fundamentals of programming in the environment of Pascal

2.1 Programming linear algorithms

Basic algorithmic constructions in programming: follow, fork, cycle.

An algorithm containing only the construction of a sequence is called linear.

The linear algorithm has the following structure:

Assignment operator in all programming languages is the main operator.

The assignment operator is used to calculate the value of a variable and assign it.

This operator performs two functions:

1. From the known values of variables, the numerical value of the

arithmetic expression to the right of the assignment character is

calculated;

2. The computed value is assigned to the name of the variable to the

left of the assignment character

Example 1. Create a program for calculating the value of a function:

 cbxaxy  2

Solution: As arguments in the task, the values of the variables ‘x’, ‘a’, ‘b’, ‘c’

are entered, the value of the variable y is output as a result:

 End

 Begin

 Input Х

cbxaxy  2

Output У

 19

Var a,b,c,x:integer; y:real;

 Begin

 Write(’a,b,c=’);Readln(a,b,c);

 Writeln (’x=’); Readln(x);

 y:=Sqrt(a*x*x+b*x+c);

 Writeln(’y=’, y);

 Readln

End.

Notes: It is necessary to pay attention to the fact that the value of a numerical

value of a real type is given in exponential form. For example, for a = 1, b

= 2, c = 3, x = 1 the result is given in the form y = 2.44944897428E +

00. To output the result of a real type, it is desirable to use a formatted output:

Writeln ('y =', y: k: m), where the first parameter indicates the

number of digits of the number, the second parameter is the number of decimal

places of the real number, for example, Writeln ('y =', y: 8: 2).

The Readln operator in the program after the result of the output operator

arranges the delay on the user's screen before pressing the <Enter> key.

Example 2. Two numbers a and b are given. Give the values of the sum,

difference, product, and quotient of these numbers.

Solution: The input parameters are the variables ‘a’, ‘b’, the result is the value of

the sum, difference, product, and quotient.

Notes: Attention must be paid to the fact that the result of the division operation

is always of the Real type:
Var a,b,s,r,p:Integer;ch:Real;

Begin

 Writeln(‘enter two numbers:’);Readln(a,b);

 s:=a+b; r:=a-b;p:=a*b;ch:=a/b;

 Writeln(a,’+’,b,’=’,s);

 Writeln(a,’-’,b,’=’,r);

 Writeln(a,’*’,b,’=’,p);

 Writeln(a,’/’,b,’=’,sh:6:2);

 Readln

End.

Example 3. The seller sold one buyer 25% of the fabric, the second - 30% of the

remnant, and the third - 40% of the remaining after the second buyer. How much

percent of the fabric is left in the store?

Decision. Let us designate the initial amount of fabric available to the seller-T.

After the seller sold 25% of the fabric to the first buyer, the remainder is T: = T-

T * 25/100 (T-0.25 * T = 0.75 * T), after the second and the third buyer we

have: T: = TT * 30/100; T: = TT * 40/100;

Note: Note that the value of T in each of the steps in the solution of the problem

changes!
Var T,P:Real;

Begin

 20

 Writeln(enter the quantity of the

fabric);Readln(T);

 P:=T; {remember initial quantity of the fabric}

 T:=T-T*25/100;{remnant of the fabric after the first buyer}

 T:=T-T*30/100;{ remnant of the fabric after the second buyer}

 T:=T-T*40/100;{ remnant of the fabric after the third buyer}

 Writeln(’remained =’,T/P*100,’% of fabric’);

Readln

End.

Tasks for independent work

1. In one hour the first worker collects N pairs of shoes, the second worker

collects L pairs, the third - H pairs. How many pairs of shoes will they

collect for T hours?

2. Determine the size of the change after buying goods in the store: gloves -

A tenge, a suitcase - B tenge, a tie - C tenge. The initial amount allocated

for purchase is D tenge

3. From points A and B two pedestrians with speed V1 and V2

simultaneously came towards each other. The distance between points L0.

Make an algorithm for finding the distance between pedestrians through

the time interval T.

4. A kid can eat 600 grams of jam for 6 minutes, and Carlson - twice as fast.

How long will they have eaten this jam together?

5. To make the necklace, the jeweler took a string of length D and pearls of

radius R. Determine how many pearls he can thread on this thread.

6. If the product first went up by 10%, and then went down by 10%, then

how much did the price of the product change?

7. If the daughter is 8 years old, and the mother is 38, how many years will

the mother be three times as old as her daughter?

8. The dog saw a hare at a distance of 150 m. If the speed of the hare is 250

m, and the speed of the dog is 260 m, how many minutes will the dog

catch up with the hare?

2.2 Programming of branching algorithms

The algorithmic construction of the fork is used in algorithms to verify the

condition and consists of a logical block and two (or one) function blocks. One

of the function blocks may be missing if a partial conditional construction.

Condition

 S1 S2

 21

An algorithm containing a conditional construction is called a branching one.

If both functional blocks are present in the conditional construction, then the

construction is called the complete conditional, otherwise it is incomplete.

If in the algorithm there is a need to use additional checking of the condition

inside the conditional block, then we are dealing with nested conditional

constructions

 + _

 + _

When constructing conditional algorithms, it is necessary to follow the rules

of structured programming: there must be one input and one output from the

algorithmic construction.

Format of the conditional operator:
if condition then

operator 1

[else operator 2];

The execution of the conditional statement begins with the calculation of

the values of the logical expression written in the conditional statement. If the

condition is true, then the operator 1 is executed, followed by the operator

behind the conditional operator. If the result of evaluating the expression is

false, the statement 2, following the service word else is executed, followed by

the operator following the conditional word. Thus, as a result of the execution of

the conditional statement, one of the operators inside the conditional statement

will be selected and executed. If in this case part of the conditional operator,

starting with the word else is absent, then control is transferred to the operator

following the conditional operator. For example, if you find a module, a number

(without using standard functions), you can use the complete form of the

conditional statement.
if x<0 then y:=-x else у:=х;

or shortened form
if x<0 then х:=-х;

The format of nested conditional operators if:

if expression 1

 then

if expression 2

 then operator 1

 else operator 2;

Condition1

 S1 Condition2

22

 S2 S3

 22

Example 1. Compose an algorithm for calculating the value of an expression












0,5

0,12

xx

xx
y

The program for calculating the value of Y has the following form:
Var x,y:real;

Begin

 Write(‘x=’); Readln(x);

 If x>=0 then

 y:=sqrt(sqr(x)+5)

 Else

 y:=sqr(x)+1;

 Write(‘y=’,y:5:2);

 Readln;

End.

Example 2. Find the largest of the three given numbers.

Note: This algorithm can be implemented either with the help of a set of 2

conditional statements:
if a>b then d:=а else d:=b;

if d>с then у:=d else у:=с;

or using a single conditional statement, using nested operators:
if а>b then

if а>с then у:=а else у:=с

 else

 if b>c then у:=b else у:=с;

According to the Syntax of conditional operators

If expression Then operator 1

 End

 Begin

 Input x

Output y

 x>=0

52  xy 12  xy

 23

 [Еlsе operator 2];

After keywords like Then and Else only one operator can be allocated. If, in any

of the branches of the alternative (Then or Else), or both require the execution

of several operators, then you should use a compound operator

operator 1 [; operator 2;...]
End;

Which allows inter[reting the group of operators as one operator.

Example 2. Order in growth of two numbers- а and b.
If а>b Then

Begin

с:=a;

а:=b;

b:=с

End;

Using compound operators in most cases makes it possible to clarify the

structure of nested operators

Tasks for independent work

1. Real numbers x, y, z are given. You are to find:

a) max (x, y, z);

b) min (x, y, z).

2. Real positive numbers x, y, z are given

a) Find out if there is a triangle with sides x, y, z;

b) If a triangle exists, indicate its type (acute, obtuse, rectangular).

3. The triangle is given by the coordinates of its vertices. Determine

whether the triangle is equilateral, isosceles, versatile.

4. Create a program that prints the number of days in a month. The month

and year are entered from the keyboard. Provide leap year verification.

5. The coordinates of the point M (x, y) are given. Determine whether the

point belongs to this plane figure:

х х

y y

х

y

 24

Selection operator

 The selection operator is a generalization of the conditional operator - it

allows one of several actions to be performed, depending on the value of the

switch. The switch is an expression, the result of which can only be an ordinal

value, the total number of elements of which does not exceed 65535.

 The general structure of the selection operator is:
Саsе switch of

constant 1: operator 1;

constant 2: operator 2;

...

constant n: operator n;

[Еlsе operator;]

End;

The selection operator execution begins by calculating the value of the

switch. If the result of the calculation is equal to one of the listed constants, then

the corresponding operator is executed, then control is passed beyond the

selection operator. If the control of the expression does not coincide with any

constant, then the operator after the else keyword is executed, if it exists, or

control is passed to the operator following the end.

Example 1. Given the number of the day of the week, give its name.
Var N:Byte;

Begin

 Write(‘N=’);Readln(N);

 Case N of

 1: write(‘Mondey’);

 2: write(‘Tuesday’);

 3: write(‘Wednesday’);

 4: write(‘Thursday’);

 5: write(‘Friday’);

 6: write(‘Saturday’);

 7: write(‘Sunday’);

 Else Write(‘No solution’); {or ‘There is no such

day’}

Example 2. By the number of the entered month, give the number of days in a

month.
Var n:Byte;

Begin

Case n of

1,3,5,7,8,10,12:writeln('31 days')

2: writeln ('28/29 days');

4,6,9,11:writeln('30 days'};

 Else

Writeln (no month with such a number)

 25

End;

End.

Tasks for independent work

1. A natural number n (n <= 100), which determines the age of a person in

years, is given. Make a program that displays this number on the screen of

the monitor with the name "year", "year" or "years".

2. In the old Japanese calendar was adopted a 60-year cycle, consisting of

five 12-year sub-cycles. Subcycles were designated by the name of the

color: green, red, yellow, white and black. Within each sub-cycle, years

were called animals: rats, cows, tiger, hare, dragon, snake, horse, sheep,

monkey, chicken, dog and pig. Write a program that, by the number of the

year, determines its name according to the Old Japanese calendar.

3. Make a program that depends on the serial number of the month (1,2, ...,

12), the number of days this month appears on the screen. Consider two

cases:

a) the year is not a leap year;

b) leap year.

A year is a leap year if its number is a multiple of 4, but only multiple of 400 is

a multiple of 100 leap years.

2.3 Programming of cyclic algorithms

2.3.1. Cycles with a parameter

 With multiple use of the same set of commands, depending on the fulfillment

(failure) of the given condition, we are dealing with cyclic algorithms.

When constructing cyclic algorithms, three types of cyclic constructions

are used: a cycle with a precondition, a cycle with a postcondition, a cycle with

a parameter.

A cycle with a precondition consists of a conditional block (cycle repeat

condition) and a function block containing the commands that make up the body

of the loop.

Cycle with postcondition - the condition for the end of the loop (logical

block) is located after the function block containing the commands that make up

the body of the loop.

A cycle with a known number of repetitions (a repetition command with a

parameter) - contains a cycle header where the range of the cycle parameter is

specified, as well as the increment of the parameter.

 26

A cycle with a Cycle with postcondition A cycle with a known

precondition number of repetitions

A cycle operator with a parameter (with a counter) is used to program such

cyclic fragments in which the initial and final values of the loop repetition

parameter are known before the cycle to be executed:

For параметр:=A to B do

 Оператор;

or

For параметр:=A downto B do

 Оператор;

where А – initial value of the parameter, В – final value of the parameter.

Let us consider the execution of a cycle operator with a parameter of the

form
for parameter:=А to В do operator;

First, the values of expressions A and B are calculated. The initial value of

the loop counter (parameter: = A) is set not in front of the loop header, but

directly in the header. If A <B, then the parameter is sequential: takes values

equal to A, A + 1, ..., B-1, B and for each of these values the operator

representing the cycle body is satisfied. If A> B, then the cycle body never

fulfill.

In addition, after the end of the body of the cycle, the incrementing of the

counter value occurs automatically.

Cycle Operator with Parameter
 for параметр:=A downto В do оператор;

is performed in the same way, but the value of the loop parameter changes in

steps of -1.

Example 1. Create an algorithm for calculating the sum S=1+2+3+4+…+N

Solution: This task belongs to the number of exhaustive tasks. One of the

solutions to the problem is to use the construction of a loop with a parameter.

 27

Enumeration of the values of the parameter X from the range [1, N] is carried

out in the header of the cycle 1 <= X <= N, the body of the cycle consists of one

command S: = S + X; as the initial data, the value of the variable N is entered,

the result is the value of S.

Var N,X,S:Integer;

Begin

Write(’N=’);

Readln(N);

S:=0;

For X:=1 to N do

 S:=S+X;

Writeln(’S=’,S);

Readln

End.

Example 2. Display two-digit numbers whose sum of digits is N (0 < N <=18)
Var k,n,p1,p2,s:Integer;

Begin

 Write ('n=');

 Readln (n);

 For k:=10 to 99 do

 Begin

 {select the highest number of the digit}

 pl:=k div 10;

 {select the lowest number of the digit}

 p2:=k mod 10;

 s:=pl+p2;

 if s=n then write(k, ’ ’);

End;

Readln;

 Input N

 S=0

 X=1, N, 1

 S=S+X

Output S

S

 28

End.

Example 3. Find all two-digit numbers that are divisible by n or contain the

digit n.
Var k,n,p1,p2:Integer;

Begin

 Write('n=');

 Readln(n);

 For k:=10 to 99 do

 Begin

 pl:=k div 10;

 p2:=k mod 10;

 If (pl=n)or(p2=n)or(k mod n=0)

 Then

 Write(k,’ ’);

 End;

 Readln;

End.

Tasks for independent work

1. Print the currancy exchange table 1,2, ..., of N dollars of the USA into tenge

at the current rate (the value of the course is entered from the keyboard). 2.

Determine the number of three-digit natural numbers whose sum of digits is

equal to the given number N.

3. Write a program for searching for two-digit numbers with the following

property: if we add the square of this sum to the sum of the digits of the number,

then the given number is obtained again.

4. The squares of some three-digit numbers end in three digits, which constitute

the original numbers. Write a program for finding such numbers (6252 =

390625).

5. On account in the bank N tenge was given at M percent per annum. How

much will in the account in X years be stored?

6. A unicellular amoeba is divided into 2 cells every 3 hours. Determine how

many cells will it have in N hours.

2.3.2 Cycles with conditions

A cycle with a precondition is used when the number of repetitions of the

loop statement is unknown in advance, and a certain condition is set for the

continuation of the cycle: While the condition do is the

operator;

Example 1. Find the sum of the digits of a given natural number n.
var m,n,s:longint;

 29

begin

write('n=');

readln(n);

m:=n;

s:=0;

while m<>0 do

begin

s:=s+m mod 10;

m:=m div 10;

end;

writeln('s=', s);

readln

end.

Example 2. Find the maximum number of a natural number.
var max,n,k,р:longint;

begin

 write('n=');

 readln(n};

 max:=n mod 10;

 р:=n;

 while p<>0 do

 begin

 k:=р mod 10;

 if k>max then max:=k;

 р:=р div 10

 end;

 writeln('max ' , n,' = ',mах);

 readln

end.

Example 3. Rearrange the digits of a given natural number in the reverse order.
var n,k,m:longint;

begin

write('n=');

readln(n);

k:=n;

m:=0;

while k>0 do

begin

m:=m*10+k mod 10;

k:=k div 10

end;

 writeln(n,'-',m)

 end.

For the software implementation of cyclic algorithms with an unknown

number of repetitions, there is one more loop operator - a cycle with a

postcondition, which has the following form:

 30

Repeat {repeat}

Operator 1;

Operator 2;

Operator 3;

. . .

Until <condition>;

This operator differs from the loop with the precondition that the condition

check is performed after the next execution of the loop body. This ensures that

the loop is executed at least once.

The execution of the statements that make up the body of the loop

continues as long as the condition is False and ends when the condition becomes

True.

Example 4. Write a program for finding the greatest common divisor of two

nonnegative numbers.
var х,у,nod:integer;

begin

 write('x,y=');readln(x,y);

 repeat

 if x>y then x:=х mod у else у:=у mod х;

 until (х=0) or (y=0);

 nod:=x+y;

 writeln('NOD = ', nod);

 readln

end.

The second version of the algorithm for finding the greatest common divisor of

two numbers:
while x<>y do

 if x>y then

 x:=x-y

 else y:=y-x;

Often when creating programs, it becomes necessary to use nested loops.

Example 5. Find all prime numbers in the interval from A to B. A natural

number is said to be simple if it is divisible without residue by only one and self.
Var a,b,x,y,k:Integer;

Begin

 Readln(a,b);

 For x:=a to b do

 Begin

 k:=0;

 For y:=1 to x do

 If x mod y=0 then k:=k+1;

 If k=2 then write(x,’ ’);

 End;

 Readln

End.

 31

Tasks for independent work

1. Natural numbers are given M and N.

a) Find NOD (M, N);

b) Find NOK (M, N);

c) reduce the fraction .

2. Create a program for graphical representation of the divisibility of numbers

from 1 to N (the value of N is entered from the keyboard). In each line, you need

to print the next number and as many "+" characters as there are dividers for this

number. For example, if N = 4, then the screen should be printed:

1+

2++

3++

4+++

3 A natural number is called perfect if it is equal to the sum of all its regular

divisors (except for itself). The number 6 is perfect, since 6 = 1 + 2 + 3. A

natural number N is given. All perfect numbers less than N must be obtained.

4 A natural number N is given. All the numbers of the palindrome that do not

exceed a given N are presented on the screen. A natural number is called a

palindrome if the record is read equally from the beginning and from the end

(for example, 123321, 565, 11, 4).

5 Determine whether a given number is automorphic. An automorphic number is

a number whose square ends with itself. For example, the number 6 is

automorphic, since its square 36 ends at 6, or the number 25 - its square 625.

2.4 Procedural-modular technology for solving problems

2.4.1 Procedures

When creating programs, there are often situations when some actions need

to be performed several times. If these actions follow each other, i.e. they are

simply repeated, then they can be written using any of the cycles (the repetition

command). But, sometimes, repetitive parts are not located one after another,

but scattered throughout the text of the program. In such cases, subroutines are

used - parts of the program in which one often writes frequently occurring

actions, for further calling them from the main program.

There are two types of subroutines in Pascal: procedures and functions. The

main difference is how they are called from the main program. Creating a new

procedure, the programmer can say, develops a new command language, which

will be used in the future as one of the already existing commands, such as Read

() or Write (). The function will be used in the same way as one of the standard

functions, for example, Abs () or Sqr ().

Procedures should be described before they are used. The declaration of the

procedure is made in the description section of the main program.

 32

The structure of the procedure is similar to the structure of the program and

contains the same sections, but instead of the word Program, the word Procedure

is specified, followed by parameters (while we are considering procedures

without parameters). The rest of the procedure is practically the same as the

program. In the description section, there may be descriptions of variables,

descriptions of constants, and even declarations of their procedures. After the

word End, the procedure is terminated with a semicolon:
var

n,m:integer;

i:integer;

fn,fm:intеgеr; {fn=n! fm=m!}

р,nn:integer;

c:real;

procedure factor;

begin

 р:=1;

 for i:=1 to nn do

 p:=p*i;

end;

A global variable is a variable declared in an external block for this

procedure.

A local variable is a variable declared in the inner block.

1) all declarations of local variables are invisible for the outer block, these

variables cannot be used in an external block;

2) all declarations of global variables whose names do not coincide with

the names of local variables are visible in all internal blocks;

3) if the names of global and local variables are the same, then the local

variable is used in the inner block.

This is due to the fact that each time the procedure is called, local variables

are created anew, and when you return from it, they are destroyed.

The parameters specified in the description of the procedure are called

formal.

The parameters supplied during the procedure call are called factual.

For example, a procedure declared with a header
procedure add(x: integer; r: real);

has two formal parameters: the whole - X and the real one - Y. Inside the

procedure, the call to its parameters occurs precisely by these names. When you

call a procedure, you can substitute any variables or even expressions as actual

parameters. The main thing is to match the type and number of parameters. For

example, the procedure can be called as follows: add (i, 3.5);

This greatly simplifies the work with the parameters. However, one more

aspect should be considered. In Pascal, there are two ways of transferring

parameters:

When passing parameters by value (sometimes they say, when using value

parameters) during the procedure call, local variables are created with the

 33

names of formal parameters. They are assigned the values of the actual

parameters. These local variables, as usual, are destroyed during the return from

the procedure.

When passing parameters by reference (when using variable parameters)

new variables are not created. Just inside the procedures, the actual parameters

are used with new names corresponding to formal parameters. In other words,

the variable from the calling block gets a "nickname", by which it can be

accessed from the procedure. To declare a parameter passed by reference, the

service word var must be placed before it.

Example 1. The procedure finds the sum of the digits of a natural number. The

input file contains a set of N integers. Output in the output file the sum of the

digits of the elements of the sequence.
procedure SUM_CIFR(m:integer; var s:integer);

var ml:integer;

begin

 s:=0;

 repeat

 ml:=m mod 10;

 s:=s+ml;

 m:=m div 10;

 until m=0;

var n,I,j,a,s:integer;

 fin,fout:text;

begin

 assign(fin,’1.in’);reset(fin);

 assign(fout,’1.out’);rewrite(fout);

 readln(fin,n);

 for i:=1 to n do

 begin

 read(fin,a);

 SUM_CIFR(a,s);

 write(fout,s,’ ’);

 end;

 close(fin);

 close(fout);

end.

Example 2. The procedure checks whether the given number is a palindrome.

The input file has a sequence of integers. Output the elements of the array that

are palindromes in the output file.
procedure Palindrom_li(m:integer; var t:Boolean);

var s,ss:string;

 i:integer;

begin

 Str(m,s);

 34

 ss:=’’;

 For i:=1 to length(s) do

 ss:=s[i]+ss;

 If s=ss then t:=True

 Else t:=False;

end;

Var n,I,a:integer;

 f:boolean;

 fin,fout:text;

Begin

 assign(fin,’A.in’);reset(fin);

 assign(fout,’A.out’);rewrite(fout);

 readln(fin,n);

 for i:=1 to n do

 begin

 read(fin,a);

 Palindrom_li(a,f);

 if f=true then write(fout,a,’ ’);

 end;

 close(fin);

 close(fout);

end.

Tasks for independent work

1. Using the procedure of finding the number of natural divisors of a number,

determine which of the three numbers of natural divisors is greater.

2. Using the procedure of finding the sum of the digits of a natural number,

determine the sum of the digits of which of the three numbers is greater.

3. Using the procedure of finding the greatest common divisor of two natural

numbers, find the GCD of three numbers.

4. Using the GCD procedure, reduce the simple fraction. The numerator and

denominator of the fraction are entered from the keyboard.

5. Write a procedure for computing the natural degree of an integer.

2.4.2 User functions

The description of the function is similar to the description of the

procedure. The word procedure is used instead of the word procedure, followed

by a list of parameters in parentheses. After the function name or after the

parameter list through the colon, you must specify the type of the value returned

by the function.

Example 1.
function pow(а,b: integer):integer;

 35

var f:integer;

 i:integer;

begin

 f:=а;

 for i:=1 to b do

 f:=f*a;

 pow:=f;

end;

The function calculates the value of the degree b of the number a specified

as parameters of the function.

This function has integers as parameters, and its result will also be an

integer value.

To call a function in a program, you need to write its name with

parameters, if any, on the right side of the assignment statement or in the

expression.
s:=pow(2,n);

k:=(s+pow(5,3)) div pow(abs(x-1),8);

writeln('5^4=',pow(5,4));

...

Sometimes a user function is used to simplify the writing of an expression.

For example, the function of calculating the degree could be described as

follows:

function pow (а,b: integer): real;

begin

 pow:=ехр(b*ln(а));

end;

Example 2. To calculate the expression
2)8(

3)1(4 2






af

af
s

Where the function f is defined in the following way: 2x5 f(x) 2 

var s,а:real;

function f(х:real):real;

begin

 f:=sqrt(5+аbs(sqr(x)-2);

end;

begin

 write('а=',а);

 readln(a);

 s:=(4*sqr(f(а-1))+3)/(f(а-8)+2);

 writeln('s= ',s);

 readln

end.

 36

Tasks for independent work

1. The function calculates the number of natural divisors of a given number.

Using this function, determine which of the three numbers of natural divisors is

greater.

2. Write a function that checks whether the number is simple or not. Result of

the function: TRUE or FALSE.

3. The function finds the number of primes in a given interval. Determine in

which of the two intervals there are more prime numbers.

4. The function determines whether the rectangle is a square. The coordinates of

the N rectangles are located. Determine how many of these squares the sides of

the rectangle are parallel to the coordinate axes.

2.4.3 Recursion

A procedure or function can call another procedure or function if it is in the

same block and has been defined in advance. For example, if the function of

computing the GCD of two natural numbers with the name GCD was previously

determined, then the function of computing the NOD of two natural numbers

can be defined as follows:

function NOK(a,b:integer):integer;

begin

 NOK:=a*b div NOD(a,b);

end;

A subroutine that calls itself is called recursive. The situation when a

procedure or function calls itself is called recursion.

The typical construction of a recursive procedure is:

procedure prec(t:integer);

begin

 <actions when entering recursion>;

 if <checking the condition> then rec(t+1);

 <actions on the escape from the recursion>;

end;

As an example of a recursive subroutine, let us consider the function of

calculating the factorial of a number. The recursive definition of the factorial

looks like this:










1,)!1(

1,1
!

nnn

n
n

The corresponding recursive function will look like this:

function factor(n:integer):integer;

begin

 if n=1 then

 factor:=1

 else

 37

 factor:=factor(n-1)*n;

end;

The process of calculating the value of a factorial of a number by means of

a recursive function can be represented in the form of a table:

 launch return

exemplar n Factor (n) n Factor (n)

1 4 - 4 24

2 3 - 3 6

3 2 - 2 2

4 1 1 1 1

If a procedure is used as a recursive subroutine, it is convenient to return

the result of calculations as a var-parameter. Recursive procedure for calculating

the factorial of a number:

procedure fact(n:integer;var f:integer);

begin

 if n=1 then f:=1

 else

 begin

 fact(n-1,f);

 f:=f*n;

 end;

end;

Tasks for independent work

1. Write a recursive function for computing the degree n of a real number a (n is

a natural number).

2. Write a recursive function for calculating the kth term of the Fibonacci

sequence. The Fibonacci sequence is constructed as follows: f0 = f1 = 1; fn = fn-

1 + fn-2 (for n = 2, 3, ...).

3. Write a recursive function that determines whether a given natural number is

prime.

4. Write a recursive procedure to display the digits of a natural number in

reverse order.

5. Write a recursive procedure for translating a natural number from the decimal

number system to an N-like one. The value of N in the main program is entered

from the keyboard (2 <= N <= 16).

6. Write the recursive function of finding NOD (a, b).

 38

3 Types and structures of data

3.1 File-based types of data

The Pascal language allows you to work with files, as with the basic units

of the disk operating system. A file is a named (named) area on a magnetic or

laser disk.

Files differ in content type and in the way they are accessed:

By type of elements (structure):

 text;

 typed;

 binary.

By ways of access to files:

 sequential access files;

 direct access files.

A text file is a sequential file. This means that when working with it, you

can either only read information from it symbol by character (or line by line), or

write;

You cannot go back to the data you just read or write (you can close the file

and start working with it again).

1. Before you start, you need to associate a variable of type Text with the

name of a particular disk file. The standard procedure is for this:
Assign (<file variable>, <file name>);

2. Opening the file for reading is done by the procedure:
Reset (<file variable>);

 Opening for writing: Rewrite (<file variable>);

3. In addition, in Turbo Pascal, you can open a file to add. The information

will be appended to the existing contents of the file:
Append (<file variable>);

4. After opening the file for reading, you can read the information using

the standard read procedure:
Read (<file variable>,<variable>);

If you need to read the data and go to the next line of the file, then the

procedure is applied Readln(<filevariable>, <variable>);

5. To write to a file, use the procedure Write (<file variable>,

<variable>);

To record with a new line: Writeln (<file variable>,

<variable>);

6. When reading from a file, the question arises, how to determine when

the file ends (when trying to read after reaching the end of the file, an execution

time error occurs). To solve the problem in Pascal there are two logical

functions:

Eoln (<file variable>) - checking the end of the line;

Eof (<file variable>) - check for reaching the end of the file.

 39

7. After working with the file, you must close it with the Close procedure
Close(<file variable>).

Example 1. A date is given in the format DD.MM.GG in the input file. In the

output file print the date in the format: day month year (April 20, 2018 - April

20, 2018).
Var S:string;

 Den,mes,god:byte;

 F1,f2:text;

Begin

 Assign(f1,’data.in’);reset(f1);

 Assign(f2,’data.out’);rewrite(f2);

 Read(f1,s);

 Den:=copy(s,1,2);

 Mes:=copy(s,4,2);

 God:=copy(s,7,4);

 Write(f2,den,’ ‘);

 Case mes of

 1: write(f2,’января ’);

 2: write(f2,’февраля ’);

 3: write(f2,’марта ’);

 4: write(f2,’апреля ’);

 5: write(f2,’мая ’);

 6: write(f2,’июня ’);

 7: write(f2,’июля ’);

 8: write(f2,’августа ’);

 9: write(f2,’сентября ’);

 10:write(f2,’октября ’);

 11:write(f2,’ноября ’);

 12:write(f2,’декабря ’);

 End;

 Write(f2,god, ‘года’);

 Close(f1);

 Close(f2);

End.

Example 2. Three numbers are given in the input file. Output the maximum and

minimum values of these numbers in the output file.
Var a,b,c,max,min:integer;

 F1,f2:text;

Begin

 Assign(f1,’1.in’);Reset(f1);

 Assign(f2,’1.out’);Rewrite(f2);

 Read(f1,a,b,c);

 If a>b then

 begin

 max:=a;

 40

 min:=b

 end

 else

 begin

 max:=b;

 min:=a

 end;

 If c>max then max:=c;

 If c<min then min:=c;

 Write(f2,’max=’,max,’ min=’,min);

 Close(f1);

 Close(f2);

End.

Tasks for independent work

1. The components of the file are real numbers. Find:

a) the sum of the components;

b) the product of the components;

c) the sum of the squares of the components;

d) the modulus of the sum and the square of the product of the components;

e) the last component of the file.

2. Components of file f are real numbers. To find:

a) the largest of the values of the components;

b) the sum of the largest and smallest values of the components;

c) the difference between the first and last component.

3. Given a file f whose components are natural numbers. Get all the components

of file f in the file g:

a) being even numbers;

b) dividing by 3 and not divisible by 7;

c) are complete squares.

4. Given a file f whose components are integers. Write all the even numbers of

the file f into the file g, and all odd numbers in the file h. The sequence of

numbers is preserved.

5. Given a character file f. Write the components of file f in file g in reverse

order.

3.2 Linear arrays

An array is a data structure that is a homogeneous, fixed by size and

configuration set of elements of a simple or composite structure ordered by

numbers.

An array is defined by the name and the number of dimensions

(coordinates) required to indicate the location of the desired array element.

 41

Arrays can be classified on two different grounds:

 by the number of dimensions, arrays are divided into one-dimensional

(vectors), two-dimensional (matrices), and multidimensional ones;

 by type of elements, arrays are divided into arrays of homogeneous data

structures, arrays of heterogeneous data structures and file arrays.

One-dimensional array is a fixed number of elements of the same type,

united by a common name, each element having its own number, and the

element numbers are consecutive.

For example, enter 10 integers from 21 to 30 and combine them with the

common name A.

1 2 3 … 10

21 22 23 … 30

A is the common name for all elements of the array. Before processing the

array, it must be described in the type declaration section or the variable

declaration section:
Const n = 10;

Type massiv = array[1..n] of Integer;

Var a: massiv;

array – functional word («massive», «array»);

[1..n] – the number of the first element is indicated in square brackets, then the

number of the last element of the array is idicated;

Integer – the type of all elements of the massive.

Or: Var a:array[1..n] of Integer;

Consequently, one-dimensional array is described as follows:
array [n1..n2] of <type of the element>;

where n1 is the number of the first element, n2 is the number of the last element.

When solving tasks for processing arrays, the first step is the stage of

initializing the array, setting initial values to the elements of the array.

Initialization of an array consists in assigning to each element of an array the

same value corresponding to the base type.

This can be done by writing a group of assignment operators. For example,
a[1]:=0; a[2]:=0; a[3]:=0; a[4]:=0;.

However, with a large number of elements, this initialization method is not

rational. It is much more convenient to get the same result using the operator

for: for i:=1 to 4 do a[i]:= 0;

Values of array elements can also be assigned using the operator read or

readln with the use of theoperator of the cycle organisation for:
for i:=1 to 4 do readln(a[i]);

Let us consider several ways to fill arrays:

1. Enter the elements of the array from the keyboard:
write (' Enter the elements of the array:');

readln (n);

writeln (' Enter the elements of the array ');

 42

for i:=1 to n do read (a[i]);

2. Filling an array with a random number generator:
for i:=1 to n do a[i]:= random(100);

3. Reading the values of elements from a file. You can create a text file in

advance, and then read the elements into an array from it. The output of an array

is performed element by element in a loop:
for i:=1 to n do write(a[i],' ');

All tasks related to processing arrays can be conditionally divided into

several types:

1. Finding the sum, product, number of elements that have given

properties.

2. Check the elements of the array to perform the specified property.

3. Change the values of array elements that have the specified property.

4. Search for items (numbers) that have the specified property.

5. Work with multiple arrays.

6. Shift of array elements.

7. Permutation of array elements.

Example 1. Find the sum of array of the elements that are multiples of a given

number.

Decision: It is necessary to look at all the elements of the array and, if the item

being watched is divided by the whole number (divisible by a given number),

add it to the sum.
var а: array[1..100] of integer;

 n,i,s,k:integer;

begin

 write('n=');readln(n);

 for i:=1 to n do read(a[i]);

 write('k= ');

 readln (k);

 s:=0;

 for i:=1 to n do

 if a[i] mod k = 0 then s:=s+a[i];

 writeln('S=',s);

end.

Example 2. Check whether the array of the elements form a monotonically

decreasing sequence of numbers.

Decision: Elements of the array form a monotonically decreasing sequence of

numbers if for each pair of neighboring numbers a [i] and a [i + 1] the condition

а[i]>a[i+1].
var а: array[1..100] of integer;

 n,i,s:integer;

 fl:boolean;

begin

 write('n=');readln(n);

 for i:=1 to n do read(a[i]);

 43

 fl:=true;

 for i:=1 to n-1 do

 if a[i]<=a[i+1] then fl:=false;

 if fl=true then

 write(’yes’)

 else write(’no’);

end.

Example 3. Given an array. All positive elements of the array are stored in one

array, negative - in the other.

Decision: We scan all elements of the array. If the element of the array in

question is positive, then we store it in array B, increasing the index of the next

element of array B, if negative - in array C, increasing the index of the next

element of array C.
var а,b,c: array[1..100] of integer;

 n,i,s,ind1,ind2:integer;

begin

 write('n=');readln(n);

 for i:=1 to n do read(a[i]);

 ind1:=0;

 ind2:=0;

 for i:=1 to n do

 if a[i]>0 then

 begin

 ind1:=ind1+1;

 b[ind1]:=a[i];

 end

 else

 begin

 ind2:=ind2+1;

 c[ind2]:=a[i];

 end;

 if ind1>0 then

 begin

 for i:=1 to ind1 do

 write(b[i],’ ’);

 writeln

 end;

 if ind2>0 then

 begin

 for i:=1 to ind2 do

 write(c[i],’ ’);

 writeln

 end;

end.

Tasks for independent work

 44

1. Replace all even elements of the array with their squares, and odd doubles.

2. Given an array. Obtain two arrays from it: write all the elements with even

numbers to one, in the other - elements with odd numbers of the original array.

3. An array of integers consisting of N elements is given. Fill it with the

keyboard. You are to find:

a) the sum of elements that have an odd value;

b) derive indices of those elements whose values are greater than a given

number.

4. Given an array of integers consisting of N elements. Fill it with the keyboard,

Find the sum of the elements that have odd indexes.

3.2.1 Search in an array

Often, when processing arrays, you have to solve problems related to

searching for array elements that satisfy specified conditions, or their numbers.

Example 1. Find the numbers of even elements of the array.

Decision: It is necessary to look through the elements of the array, and if the

item being watched is even, output its number.

writeln ('numbers of the even elements of the array:')

for i:=1 to n do

if а[i] mod 2 =0 then write(i:4);

Example 2. Find the maximum and minimum elements of an array.

Decision:
var a:array[1..100]of integer;

 n,I,max,min:integer;

begin

 write(‘n=’);readln(n);

 for i:=1 to n do read(a[i]);

 max:=a[1];

 for i:=2 to n do

 if a[i]>max then max:=a[i];

 min:=a[1];

 for i:=2 to n do

 if a[i]<min then min:=a[i];

 writeln(’max=’,max,’ min=’,min);

end.

Note: if you want to find the ordinal number of the maximum (minimum)

element, then you can apply the algorithm:
max:=a[1];ind:=1;

for i:=1 to n do

 if a[i]>max then

 begin

 max:=a[i];

 ind:=i

 end;

 45

or:
ind:=1;

for i:=1 to n do

 if a[i]>=a[ind] then

 ind:=I;

Tasks for independent work

1. For N points on the plane, find the three points that form the triangle with the

largest area.

2. Display the elements of the array that are:

a) prime numbers;

b) the perfect numbers;

3. Write in the array the first N Fibonacci numbers:

а1=1; а2=1; … аi=ai-2+ai-1, i>2.

4. Among the N points on the plane, find a pair of the most distant from each

other.

3.2.2 Shifts, reversal, and sorting of array elements

One of the types of array processing is a shift, in which the value of each

shifted element is transferred to the previous or next elements of the array. In

this connection, the cyclic shifts of the elements to the left and to the right are

distinguished.

Consider the shift of array elements in the following example. It is

necessary to remove the maximum element from the array (all elements of the

array are different). After deleting the maximum element, the array "compact",

shifting all the elements following it to the left. In order to solve this problem, it

is necessary:

1) find the number of the maximal element k;

2) move all the elements of the array, starting with k + 1-go, one step to the left;

3) assign the last element a value of zero;

4) reduce the dimension of the array by 1.

var a:array[1..100]of integer;

 n,I,k,max:integer;

begin

 readln(n);

 for i:=1 to n do read(a[i]);

 k:=1;

 for i:=1 to n do

 if a[i]>a[k] then k:=I;

 for i:=k+1 to n do

 a[i-1]:=a[i];

 a[n]:=0;:=n-1;

 for i:=1 to n do write(a[i],’ ’);

end.

 46

In the considered example, all elements of the array following the

maximum moved left one position.

After the cycle is completed, all elements starting from k + 1th will be

shifted to the left by 1 step. The maximum element was "pushed" out of the

array, the value of the penultimate a [n-1] and the last a [n] array elements were

the same. The last element is zeroed, and the number of elements after removing

one element is reduced by one. We have considered the so-called ordinary

element shift.

For example, if you apply this program to an array А:

А 1 2 3 4 5 6 7 8

2 7 3 45 17 21 37 9

Then as a result of the program execution, we get the following array:

А 1 2 3 4 5 6 7

2 7 3 17 21 37 9

Consider a circular shift of the elements of the array to the right by one

position.
var m:array[1..100] of integer;

 i,k:integer;

begin

 k:=m[n];

 for i:=n downto 2 do

 m[i]:=m[i-1]);

 m[1]:=k;

end;

Consider permutations of array elements in the reverse order. If the original

array looked like this:

А 1 2 3 4 5 6 7 8

2 7 3 45 17 21 37 9

then after the treatment it will look like:

А 1 2 3 4 5 6 7 8

9 37 21 17 45 3 7 2

To reverse an array, proceed as follows. We swap the first element of the

array with the last, the second element with the penultimate, and so on.

We will have А[1]↔ A[8] on the first step.

The table after the permutation of this pair of elements takes the form:

А 1 2 3 4 5 6 7 8

9 7 3 45 17 21 37 2

 47

On the second step: А[2]↔ A[7]:

А 1 2 3 4 5 6 7 8

9 37 3 45 17 21 7 2

On the third step: А[3]↔ A[6]:

А 1 2 3 4 5 6 7 8

9 37 21 45 17 3 7 2

On the fourth step: А[4]↔ A[5]:

А 1 2 3 4 5 6 7 8

9 37 21 17 45 3 7 2

It means that after four permutations of pairs of elements standing at the

same distance from the center of the array, we obtained an array whose elements

are rearranged in the reverse order in comparison with the original one. In

general, the algorithm for handling the array will look like this:

var m:array[1..100]of integer;

 i,c:integer;

begin

 readln(n);

 for i:=1 to n do read(m[i]);

 for i:=1 to trunc(n/2) do

 begin

 c: =m[i];

 m[i]:=m[n-i+1];

 m[n-i+1]:=c;

 end;

Sorting is the process of rearranging the elements in a certain order. There

are many methods for sorting arrays. But most of them can be attributed to three

main varieties:

1) sorting inclusions;

2) sorting by choice;

3) sorting by exchange.

Let us consider classical variants of these sortings. We will assume that it is

required to arrange the array in ascending order of elements.

Sorting by inclusions

Elements of the array will be conditionally divided into an already prepared

sequence a [1] ... a [i-1] and the remaining input sequence. At each step, starting

 48

with the second element, we will insert the current element of the array into a

suitable place in the already sorted part of the array.

Consider, for example, the initial array:

А 1 2 3 4 5 6 7

44 55 12 42 94 18 6

In the first step (for i = 2), the finished sequence represents only one

number 44. The element a [i] = 55 should remain in its place, because 55> 44.

For i = 3, the number 12 must be inserted in the sequence {44 55} in the first

place.

А 1 2 3 4 5 6 7

44 55 12 42 94 18 6

That is why the array has the following view:

А 1 2 3 4 5 6 7

12 44 55 42 94 18 6

In the next step, the number 42 is compared from right to left with each of the

previous elements until we find a suitable place for insertion:

А 1 2 3 4 5 6 7

12 44 55 42 94 18 6

i=5:

А 1 2 3 4 5 6 7

12 42 44 55 94 18 6

i=6:

А 1 2 3 4 5 6 7

12 42 44 55 94 18 6

i=7:

А 1 2 3 4 5 6 7

12 18 42 44 55 94 6

Sorting finishes when i>n:

А 1 2 3 4 5 6 7

6 12 18 42 44 55 94

 49

Instead of looking for a suitable place for inserting the current element in

one cycle, and performing a shift in another cycle, we combine these operations.

This procedure is obtained:
procedure SortInsert;

Var i,j:integer;

 c:integer;

begin

 for i:=2 to n do

 begin

 x:=a[i];

 j:=i-1;

 while x<a[j] do

 begin

 a[j+1]:=a[j];

 j:=j-1;

 end;

 a[j+1]:=x;

 end;

end;

Sorting by choice

Let us find the minimal element of the array and change it by places with

the first one. Among the remaining elements, you must find the minimum and

swap it with the second and so on until there is a maximum element located at

the end. For example, the same array is given:

А 1 2 3 4 5 6 7

44 55 12 42 94 18 6

After finding the minimum element (i = 1) and exchanging it with the first

one, we get:

А 1 2 3 4 5 6 7

6 55 12 42 94 18 44

i=2:

А 1 2 3 4 5 6 7

6 55 12 42 94 18 44

The minimum among the remaining elements (12) is exchanged with the second.

The variable i indicates the number of the element where the next minimum

value will be placed.

i=3:

 50

А 1 2 3 4 5 6 7

6 12 55 42 94 18 44

i=4:

А 1 2 3 4 5 6 7

6 12 18 42 94 55 44

i=5:

А 1 2 3 4 5 6 7

6 12 18 42 94 55 44

i=6:

А 1 2 3 4 5 6 7

6 12 18 42 44 55 94

The procedure of sorting by choice has the following view:
procedure SortSelect;

var i,j,k:integer;

 х:integer;

begin

 for i:=1 to n-1 do

 begin

 k:=i;

 x:=a[i];

 for j:=i+1 to n do

 if a[j]<x then

 begin

 k:=j;

 х:=a[j];

 end;

 a[k]:=a[i];

 a[i]:=x;

 end;

end;

In the proposed procedure, the variable k indicates the position of the

minimum among the elements considered, and the variable x is its value. The

inner loop is used to find the minimum value. The exchange of elements occurs

after the end of the inner cycle.

 51

Sorting by exchange

The algorithm for sorting by exchange is based on comparing and

exchanging a pair of neighboring elements. If two neighboring elements are not

arranged in ascending order among themselves, then they exchange places.

At the first viewing, the minimum element is in its place, so the next time

you can consider only the remainder of the array.

The procedure is as follows:

procedure SortChange1;

var i,j:integer;

 х:integer,

begin

 for i:=2 tо n do

 begin

 for j:=n downto i do

 if а[j-1]>а[j] then

 begin

 х:=a[j-l];

 a[j-1]:=a[j]

 a[j]:=х;

 end;

 end;

end;

Consider the process of executing an inner loop when i=2.

j=6:

1 2 3 4 5 6

44 55 12 42 94 18

j=5:

1 2 3 4 5 6

44 55 12 42 18 94

j=4:

1 2 3 4 5 6

44 55 12 18 42 94

j=3:

1 2 3 4 5 6

44 55 12 18 42 94

 52

Changing the second index

индекса

C
h
an

g
in

g
 t

h
e

fi
rs

t

in
d
ex

1 2 3 4 5 6

1

2

 3

4

5

6

j=2:

1 2 3 4 5 6

44 12 55 18 42 94

Thus, after all the iterations of the inner loop, the array has the form:

1 2 3 4 5 6

12 44 55 18 42 94

Tasks for independent work:

1. In the table x [1..n], each element is equal to 0, 1 or 2. To rearrange the

elements of the array so that all zeros are located first, then all the ones, and

finally all the deuces.

2. An array of pairwise distinct numbers is specified. Create an algorithm for

rearranging the elements of the array so that the minimum element is the first,

the next in ascending order is the last one, etc., and the maximum is the average

one.

3. A linear array of N elements is given. Delete those elements of the array that

violate the order of elements in ascending order.

4. You are to order all the elements of the linear array preceding the maximal, in

ascending order, the ones following it - in descending order.

3.3 Two-dimensional arrays

Arrays can have more than one dimension. In such cases, one speaks of

multidimensional arrays. They are widely used in statistics and mathematics (for

example, for matrix calculations).

The declaration (description) of a two-dimensional array:

 53

const m=8; n=6;

var A: array[1..m, 1..n] of real;

where A – the name of the array,

1..m – borders of changing the first index,

1..n – borders of changing the second index,

real – type of the elements of the array

or:
const m=30; n=50;

type matr=array[1..m,1..n] of real;

var A: matr;

The two-dimensional array can be formed in one of three ways: keyboard

input, random number generator, read from file.

Entering elements of a two-dimensional array from the keyboard:
readln(m,n);

for i:=1 to m do

for j:=1 to n do

read(x[i,j]);

Output of elements of a two-dimensional array on the screen:
for i:=1 to m do

begin {output of the ith line of the array}

for j:=1 to n do

write (x[i, j]);

writeln;

end;

3.3.1 Square Matrices

A two-dimensional array whose number of rows is equal to the number of

columns is called a square matrix.

The main diagonal of square matrix:

 A11 A12 A13 A14 A15 A11 A12 A13 A14 A15

 A21 A22 A23 A24 A25 A21 A22 A23 A24 A25

 A31 A32 A33 A34 A35 A31 A32 A33 A34 A35

 A41 A42 A43 A44 A45 A41 A42 A43 A44 A45

 A51 A52 A53 A54 A55 A51 A52 A53 A54 A55

The properties of the indices of the elements of the square matrix relative to

the main diagonal:

1. belonging to the main diagonal: i-j = 0;

2. located below the main diagonal: i <j;

3. located above the main diagonal: i> j;

4. located on lines parallel to the main diagonal: i-j = const;

namely, (n-1)<=i-j<=n-1.

 54

The properties of the indices of the elements of the square matrix relative to

the auxiliary diagonal:

1. belonging to the auxiliary diagonal: i+j=n+1;

2. located below the auxiliary diagonal: i+j<n+1;

3. located above the auxiliary diagonal: i+j>n+1;

4. located on lines parallel to the auxiliary diagonal: i+j=const;

namely, 2<=i+j<=2*n.

Auxiliary diagonal of the square matrix:

 A11 A12 A13 A14 A15 A11 A12 A13 A14 A15

 A21 A22 A23 A24 A25 A21 A22 A23 A24 A25

 A31 A32 A33 A34 A35 A31 A32 A33 A34 A35

 A41 A42 A43 A44 A45 A41 A42 A43 A44 A45

 A51 A52 A53 A54 A55 A51 A52 A53 A54 A55

The condition that the elements of a square matrix belong to one row, column:

The first (last) indices for all elements of a row (column) are the same.
i–const (i=3) j–const (j=3)

 A11 A12 A13 A14 A15 A11 A12 A13 A14 A15

 A21 A22 A23 A24 A25 A21 A22 A23 A24 A25

 A31 A32 A33 A34 A35 A31 A32 A33 A34 A35

 A41 A42 A43 A44 A45 A41 A42 A43 A44 A45

 A51 A52 A53 A54 A55 A51 A52 A53 A54 A55

Let us consider various variants of formation of elements of a two-

dimensional array on the specified property.

Example 1. Create a program for filling a two-dimensional array A[m,n] by

nulls and ones in the staggered order.
 var a:array[1..10,1..10] of integer;

 n,i,j:integer;

 begin

 writeln(‘n: ’);

 readln(n);

 for j:=1 to n do

 if (i+j) mod 2 = 0 then

 a[i,j]:=1

 else

 a[i,j]:= 0;

 for i:=1 to n do

 begin

 for j:=1 to n do write (a[i,j]:2);

 writeln

 end;

 readln

 55

 end.

Example 2. Create a program for filling a two-dimensional array "on a snake".

For example, a rectangular matrix A[3,4] has the following type:

1 2 3 4

8 7 6 5

9 10 11 12
var a: array[1..10,1..10] of integer;

 m,n,i,j,k:integer;

 begin

 writeln(‘m,n:’);

 readln (m,n);

 for i:=1 to m do

 if i mod 2<> 0 then

 for j:=1 to n do

 begin

 k:=k+1; a[i,j]:=k

 end

 else

 for j:=n downto 1 do

 begin

 k:=k+1; a[i,j]:=k

 end;

 for i:=1 to m do

 begin

 for j:=1 to n do

 write(a[i,j]:6);

 writeln

 end;

 end.

You can suggest another way to fill a two-dimensional array "on the snake":
 for j:=1 to n do

 if i mod 2 <> 0 then

 a[i,j]:=(i-1)*n+j

 else

 a[i,j]:=i*n–j+1;

Example 3. A Latin square of order N is a square matrix of size N x N, each

row and column of which contains the numbers 1, 2, 3, ..., N. Write a program

for constructing a Latin square of dimension N.

Solution: We can suggest the following algorithm for constructing a Latin

square:

1. Fill the first line with the numbers 1, 2, 3, ..., N;

2. Lines, starting with the second, fill the elements of the previous line,

shifted along the cycle to the left or right:
 for j:=1 to n do a[i,j]:=j;

 for i:=2 to n do

 56

 begin

 a[i,1]:=a[i-1,n];

 for j:=2 to n do a[i,j]:=a[i-1,j-1];

 end;

Example 4. Create a program for constructing Pascal's triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

 uses crt;

 var a: array [1..10, 1..10] of integer;

 n,i,k,j,x,y,l :integer;

 begin

 write(‘n=’); readln(n);

 x:=40;

 k:=0;

 clrscr;

 goto(x-10,1);

 writeln(‘Triangle of Pascal when N=’,n,’:’);

 gotoxy(x,3); writeln(‘l’);

 for i:=1 to n do

 begin

 k:= k+1;

 a[i,1]:=1; a[i,k+1]:=1;

 for j:=2 to k do

 a[i,j]:=a[i-1,j-1]+a[i-1,j];

 x:=x-3; l:=x;

 for j:=1 to k+1 do

 begin

 gotoxy(l,i*2+3);

 write (a[i,j]);

 l:=l+6;

 end;

 end;

 readln

 end.

Tasks for independent work

1. Fill a two-dimensional array A (NxN) by the rule:

 1 - if the element belongs to the diagonals;

 0 - if it doesn’t belong.

 57

2. An arithmetic square of order N is a square matrix of size N × N whose

first row and first column are filled with ones, and each of the remaining

elements is equal to the sum of its neighbors on the left and above. Draw

up a program for constructing an arithmetic square of dimension N.

 For example when N=4 we have: 1 1 1 1

 1 2 3 4

 1 3 6 10

1 4 10 20

3. Form the Pythagorean matrix (multiplication table in matrix form) and

display it on the screen.

4. Form a square matrix as follows: the elements of the main diagonal are

equal to 1, the elements located on lines parallel to the main diagonal

(above and below) are equal to 2, 3, ...

For example, for N = 4 we have the following matrix:

 1 2 3 4

 2 1 2 3

 3 2 1 2

 4 3 2 1

5. Fill the square matrix according to the following pattern:

 1 2 2 2 2 2 1

 5 1 2 2 2 1 3

 5 5 1 2 1 3 3

 5 5 5 1 3 3 3

 5 5 1 4 1 3 3

 5 1 4 4 4 1 3

1 4 4 4 4 4 1

6. The chessboard can be represented as a two-dimensional array of 8x8.

Initially, the array is filled with zeros. From the keyboard are entered

the coordinates of the queen in the form of column number and line

number on the chessboard. Fill in units of the array elements

corresponding to the cells threatened by the queen.

3.3.2 Processing two-dimensional arrays

You can select several types of tasks for processing two-dimensional arrays.

1. Finding the sum, quantity, product, indices of elements with this property.

2. Arithmetic operations on matrices.

3. Check the elements of the array for the specified condition.

4. Transformation of array elements according to the specified method.

5. Insert and delete elements of the array.

6. Rearrange the elements of the array.

Example 1. A two-dimensional array of dimension mxn is given. Find the

number of negative elements in each row of the array.

 58

Let us consider some variants of the decision of the given problem.

1. You can store the number of negative elements of each row in a one-

dimensional array of the corresponding dimension:
procedure KOL1(x:dmyarray; var у:omyarray);

var i,j:integer;

begin

y[i]:=0;

for j:=1 to m do

if x[i,j]<0 then inc(y[i]);

end;

2. You can use the counter, find the number of negative elements of the line and

immediately display the found values on the screen:
 procedure KOL2(х:dmyarray) ;

 var i,j,k:integer;

begin

for i:=1 to n do

begin

k:=0;

for j:=1 to m do

if х[i,j]<0 then inc(k);

writeln(i,'-',k);

end;

Example 2. Compile a program for computing the product of two rectangular

matrices А(m,t)* B(t,n).

Elements of the resulting matrix C (m, n) are determined by the formula:





t

k

jkbkiajic
1

],[*],[),(

procedure PROIZV(x,у:dmyarray; var z:dmyarray);

var k,i,j,t:integer;

begin

for i:=1 to n do

for j:=1 to n do

begin

z[i,j]:=0;

for k:=1 to t do

z[i,j]:=z[i,j]+х[i,k]*y[k,j];

end;

end;

Example 3. Determine whether a given square matrix is symmetric with respect

to the main diagonal.
а[1,1] а[1,2] … а[1,n]

а[2,1] а[2,2] … а[2,n]

 … … … …

a[i,1] a[i,2] … a[i,n]

 59

 … … … …

a[n,1] a[n,2] … a[n,n]

For a square matrix, the condition i=j determines the elements of the main

diagonal, where i<j are the elements of above level than the main diagonal,

i>j are the elements of below level than the main diagonal.

If the condition a [i, j] = a [j, i] holds for all i = 1,2,

..., n and j = 1,2, ..., n, i> j, then the matrix is symmetric . Let

us check the square matrix for symmetry as a function:

function SIMMETR(x:dmyarray):boolean;

var i,j:integer;

 t:boolean;

begin

 t:=true;

 i:=2;

 while t and (i<=n) do

 begin

 j:=1;

 while (j<i)and(x[i,j])=х[j,i])do

 inc(j];

 t:=(j=i);

 inc(i);

 end;

 simmetr:=t;

end;

If there is at least a pair of such elements such that x [i, j] <> x [j,

i], the function will return false, if no such pair meets, the value of the

function will remain true.

Example 4. Given a two-dimensional array of dimension mxn, whose elements

are integers. Perform a "mirror image" of the matrix elements with respect to the

vertical axis of symmetry.

procedure OTOBR(var х:dmyarray);

var i,j,b:integer;

begin

for j:=1 to n div 2 do

for i:=1 to m do

begin

b:=a[i,j];

а[i,j]:=а[i,n-j+1];

а[i,n-j+1]:=b

end;

 60

Example 5. A matrix of dimension mxn is given. Among the smallest elements

of the rows, find the largest element and determine its location in the matrix.
uses crt;

const

m=10;

n=15;

type matr=array[1..m,1..n] of integer;

var

а:matr;

 i,j,k,l:integer;

min,b:array [1..m] of integer;

begin

ClrScr;

readln(m,n);

{Find the minimal elements of each line and put

them in an array min[1..m]}

for i:=1 to m do

begin

min[i]:=а[i,1];

b[i]:=1;

for j:=2 to n do

if a[i,j]<min[i] then

begin

 min[i]:=a[i,j];

 b[i]:=j

 end;

end;

{Find the maximum among the elements of the array

min[1..m]}

k:=1;

for i:=2 to m do

if min[i]>min[k] then k:=i;

writeln('Maximal among the minimum elements of

the lines:', min [k], '', its location: line

number- ', k,' column number - ', b [k]);

readln

end.

Example 6. Delete the string with the number k from the array.

To delete a row with the number k, you must:

1. Move all lines starting from this one up one line.

2. The last line is "null", that is, assign the value 0 to all elements of the last row.

3. Dimension (number of rows) of the array is reduced by 1.

procedure DELETE(k:integer; var х:dmyarray);

 var i,j:integer;

begin

 61

for i:=k to m-1 do

for j:=1 to n do

x[i,j]:=x[i+1,j];

for j:=1 to n do

x[m,j]:=0;

m:=m-1

end;

Using this procedure, you can solve the problem of deleting rows of an array

that satisfy the given condition.

Tasks for independent work

1. Find out if there is a column in the array that has the same elements.

2. Create an algorithm that, for a given square matrix, calculates the sums of

elements located on lines parallel to the main (secondary) diagonal.

3. The matrix A (MxN) is given. Get the vector from the minimal column

elements of this matrix.

4. Count the number of columns in the array whose elements are sorted in

descending order.

5. Reverse the elements of the rows of the array containing duplicate

elements.

6. Seryozha and Natasha played tic-tac-toe. If none of them succumbed, then

there was always a draw. Then they began to try to play in fields of other

sizes. A field of size NxN cells can be represented as a matrix in which 1

corresponds to a cross, and 0 to a zero. Write a program that, according to

the filled matrix, determines the winner.

3.4 Line data type

The line is a special form of a one-dimensional array of characters, which

has a significant difference. An array of characters has a fixed length (the

number of elements), which is defined in the description. The line has two

varieties of length:

- the total length of the line that characterizes the memory size allocated to

the line in the description;

- the current length of the line (less than or equal to the total length), which

shows the number of semantic characters of the line at each particular moment

in time.

The string can be declared (described) as follows:

var s1:string[10];

 s2:string[120];

 s3:string;

If the length of the string in the description is not specified, then the default

length is 255 characters.

 62

String variables are displayed using standard Write and Writeln

procedures and are entered using standard Read and Readln procedures.

Thus, the lines are not entered element by element, but whole.

String operations

In Pascal, there are two basic ways of handling variables of type String.

The first method involves processing the entire line as a single whole, i.e.

single object.

The second method - treat the string as a composite object, consisting of

individual characters (Char type elements) that are available when processing

each separately.

Gluing is meant as the consecutive combination of several strings. The

operation of gluing the lines is indicated by the symbol "+".

Example: ’infor'+’mation’=’information’.

Gluing of rows can also be organized using the function
concat(S1,S2,...,Sn).

For example:
var s1,s2,s3:string;

begin

sl:='infor';

s2: ='mation';

s3:=concat(sl,s2);

end.

The variable S3 takes the value’information’.

Pascal allows you to perform two-line comparison operations. The

comparison takes place character-by-symbol from left to right: the codes of the

corresponding symbols are compared until the equality of the codes is broken or

the end of one of the lines is reached. Two lines are called equal if they are equal

in length and coincide by character.

For example:

’computer’ > ’Computer’ (ord('c')>ord('C'))

’Algol' > 'Algel' (ord('о')>ord('е'))

’algorithm1’>'algorithm'

(length(str1)>length(str2))

’IBM’= ’IBM’

When comparing strings, you can use the relations operations (>, <,

=,> =, =, =) in conditional statements. The result of the comparison

operation is True or False.

To work with strings of type String in Pascal, standard functions and

procedures are used.

To remove a fragment from the line, use the procedure
Delete(Str,n,m):

For example:
Str1:='Programming';

Delete(Str1,4,5);

 63

Writeln(Str1);

Str1='Proing'.

To insert a substring in a string, use the procedure
Insert(Str1,Str2,N):

For example:
Strl:='formati';

Str2:='Inon';

Insert(Str1,Str2,3);

Str2='Information'.

Function Copy(Str,N,M) copies M symbols of the string Str,

beginning with N-th symbol.

Example:
Str:='Information';

Сору(Str,3,6)='format';

Сору(Str,3,5)='forma';

Function Length(Str) gives the number of symbols in the string.

For example:
Length('Information')=11

Length('true or false')=13

Function Pos(Str1,Str2) defines the position of entering string Str1

into the string Str2.

Example:
Pos('for','information')=3

Pos('the','if then else')=4

Pos('abc','ab cd ef')=0

Pos('ab','ab cd ab')=1

Procedure Str(N,Str1) transfers the numerical type N into string type

Str1.

For example:
Str(121,Str1);Str1='121'

Str(25.17,str2);str2='25.17'

Str(4.25е+2,Str3);Str3='4.25е+2'

Procedure Val(Str,N,K) transfers the string type meaning Str into

numerical N.

For example:
Val('1234',n,k); n=1234; k=0;

Val('23.56',n,k); n=23.56; k=0;

Val('2. 78е+3',n,k); n=2.78e+3; k=0;

Val('2,78',n,k); k=2 (error: «,»)

val('75.12с-5',n,k); k=6 (error:symbol «с» is not

allowed in the numbers writing).

Example 1. Calculate the number of digits included in this string.
var s:string;

i,k:byte;

begin

 64

 write('Input string:');

 readln(s);

 k:=0;

 for i:=1 to length(s) do

 if (s[i]>='0') and (s[i]<='9') then

 k:=k+1;

 writeln('k=',k);

 readln;

 end.

Note: You can use the procedure Val:

k:=0;

for i:=1 to length(s) do

begin

val(s[i],n,d);

if d=0 then

 k:=k+1;

end;

Example 2. Delete repeated occurrences of characters in the string.
Variant 1:

var i,j:integer;

 s,ss:string;

begin

 readln(s);

ss:=’’;

for i:=1 to length(s) do

if pos(s[i],ss)=0 then

ss:=ss+s[i];

end;

Variant 2:

var i,j,k:byte;

 st:string;

begin

 readln(st);

for i:=1 to length(st)-1 do

for j:=i+1 tо length(st) do

if st[i]=st[j] then

begin

delete(st,j,1);

end;

end;

Example 3. Two strings of characters are given. Compose a third string of non-

repeated characters, simultaneously entering both the first and second strings.

var sl,s2,s3:string;

i,k:integer;

 65

begin

writeln('s1:');

readln(sl);

writeln(’s2:’);

reasdln(s2);

for i:=1 to length(sl) do

if (pos(s1[i]),s2)<>0)and(pos(s1[i],s3)=0)

then s3:=s3+s1[i];

writeln(s3);

readln;

 end.

Tasks for independent work

1. A word is given. Get a copy and reference (a word obtained by reading

the original word, beginning with its end) of the given word.

2. Compose a program that forms a string consisting of any given number of

any identical characters.

3. There is a string of characters. Add to it at the beginning and at the end a

given number of asterisks, i.e. characters "*".

4. Calculate how many times in a given line the specified character meets?

1. How many vowels are there in this line?

2. To check whether the following line is a reversed row (read from left to

right and from right to left): after removing all spaces from it:

a) "ARGENTINA BACKENS NEGRO" (АРГЕНТИНА МАНИТ

НЕГРА);

b) "A ROSE FELL TO THE PAW OF AZOR" (A РОЗА УПАЛА НА

ЛАПУ АЗОРА).

5. The text is given. Find the largest number of consecutive identical

characters in a string.

6. Three lines are given. Determine whether it is possible to get the third line

from the characters of the first two lines.

7. A string of characters is given. All digital symbols are rearranged to the

beginning of the line, rearranging them in the reverse order

8. A word is given. Determine how many different letters in it.

9. The text is given. Find the length of its shortest word.

3.3 Enumerated data type

Values of this type form an ordered set and are constants.

Example:
Tуре Gaz=(Ge,С,О,Н):

 Metall=(Na,K,Zi,Са,Zn);

Var

G1,G2: Gaz;

Metl,Met2: Metall;

 66

Season: Winter,Spring,Summer,Autumn;

Variables of an enumerated type are built-in functions Ord, Pred и

Succ:

Ord(Spring)=1

Pred(Autumn)=2

Succ(Winter)=1

 The values of these types do not apply to arithmetic operations, nor standard

I/O procedures as Read, Readln, Write, Writeln. But you can enter

a number that is the sequence number of an element of the enumerated type,

using, for example, the selection operator such as Саsе:

writeln('Enter the number of the element');

readln(k);

саsе k of

0:writeln('Winter');

1:writeln('Spring');

2:writeln('Summer');

3:writeln('Autumn');

else

writeln('there is no such an element in the

task');

end;

Task for independent work

1. Define the enumerated type that describes the days of the week. Write

functions to work with this type.

- getting the value of the listed type by the day of the week number;

- get a string with the name of the day of the week by the value of the

enumerated type.

2. Using these functions, write a program that determines which day of the week

the given date is (take only the current year).

3.5 Sets

 The set in Pascal is a set of different elements of the same (basic) type. Sets

in Pascal can only include elements of ordinal types.

Sets can be described as follows:
Type <name> = set of <type of elements>;

var <the name of the set>:<the name of the type>;

or:

var <the name of the set>: set of <type of

elements>;

For example:
Type mnog=set of char;

 var mnl:set of char;

 67

 mn2: mnog;

 mn3: set of 'а'..'z';

 а:set of byte;

 b:set of 100..200;

Formation (construction) of sets. In the program, the elements of the set

are given in square brackets, separated by a comma. If the elements go

successively one after the other, then you can use the range.

 For example:
 type mnog=set of 1..200;

var а,b,с,d:mnog;

begin

 а:=[3,9,67,5];

 b:=[7..60];

 с:=[1..10,80..90];

 d:=[];

 end;

Operations over sets

The union of two sets is the set of elements belonging to at least one of

these sets.

Examples:

1) ['A','F']+['B','D']= ['A','F','B','D'];

2) [1,2,7,4,6,8] + [3,4,5,6] = [1..8]

3) [1..3,5,7,11] + [3..8,10,12,15..20]=

[1..8,10,11,12,15..20]

The intersection of two sets is the set of elements that belong to both the

first and the second set simultaneously.

Examples:
1) ['А','F']*['В','D']=[]

2) [1,2,3,4]*[3,4,5,6]=[3,4]

3) [1..3,5,7,11]*[3..8,10,12,15..20]=[3,5,7]

The difference between two sets is a set consisting of those elements of the

first set that are not elements of the second set.

А В

А+В

А В

А*В

 68

Examples:
1) ['А','F']-['В','D']=['А','F']

2) [1,2,3,4]-[3,4,5,6]=[1,2]

3) [1..3,5,7,11]-[3,8,10,12,15..20]=[1,2,11]

The operation of determining whether an element belongs to a set. The

mathematical notation of the operation is "", in Pascale - "in". The result of

the operation is true if the element is in the set, and false - otherwise.

Examples:
1) 4 in [3, 4, 6, 8] = true

2) 'а' in ['А'..'Z']=false

Comparison of sets

For comparison of sets, the operations of the relation are used:

= check for equality (coincidence) of two sets;

<> check for the inequality (mismatch) of two sets;

<=, <check for the occurrence of the first set in the second;

> =,> check for the occurrence of the second set in the first.

Sets are convenient to use when processing strings and texts, as well as

when working with ordered sets of numbers.

Example. "Sieve of Eratosthenes". Make a program for finding prime

numbers in the interval [1..n].

Desicion:

A simple number is a number that has no other divisors except one and the

number itself. The idea of this method is as follows: a set M is formed in which

А В

А-В

А
 А В

А*В

X in A

A<=B

A B A B

true false

A
B

true

A B A B

true false

A
B

false

A<B

 69

all the numbers of a given interval are contained. Then, from the set, we

successively remove elements that are multiples of 2, 3, 4… n div 2:

program Simple;

var m:set of byte;

 i,k,n:integer;

begin

 write('n=');

 readln(n);

 m:=[2..n];

 for k:=2 to n div 2 do

 for i:=2 to n do

 if (i mod k=0) and (i<>k)then

 m:=m-[i];

 for i:=1 to n do

 if i in m then

 write(i:3);

 readln

end.

Tasks for independent work

1. A natural number N is given. Write a program that prints all the digits

that are not in the decimal notation of a given natural number in ascending

order.

2. Create a program to print all the characters of the specified text, included

in it once.

3. Create a program for calculating the number of vowels and consonants in

the given text and determining which letters are larger (vowels or consonants);

note that the string may contain other characters, except letters.

4. Solve the rebuses:

a) lob+tri=sam /лоб + три = сам

b) iks+isk=ksi / икс + иск = кси

a) abc=ab + bc + ca

b) tochk+krug=konus / точк + круг = конус

c) volvo + fiat = motor

d) mukha+mukha=slon / муха + муха = слон

5. Create a print program in alphabetical order (one time) of all lowercase

Russian vowels entering the given text.

3.7 Graph model of the algorithm

One way to solve non-standard problems is to use algorithms on graphs.

The main algorithms on graphs are:

 sorting the vertices of the graph in a wide width search ("wave method" or

fill method, overflow with return or "trial and error method");

 70

 Dijkstra's algorithm for finding the shortest paths in a graph from a given

vertex to all the others;

 Floyd's algorithm for finding the shortest paths in a graph between all pairs

of vertices and others.

Graph theory as a mathematical discipline appeared in 1736, when L. Euler

(1707 - 1782, a Russian mathematician, a Swiss by birth, an academician of the

Petersburg and Berlin Academies of Sciences), solved the widely known at that

time task of the Koenigsberg (now Kaliningrad) bridges. This result remained

for more than one hundred years unique in graph theory.

Interest in the problems of graph theory revived around the middle of the

last century and was concentrated mainly in England. There were many reasons

for this revival of the study of graphs: the natural sciences had their influence on

this by exploring electrical networks, crystal models and molecular structures.

At present, this theory is widely developed and successfully applied.

Graphs can depict schemes of roads, communications, electrical circuits,

molecules of chemical compounds, connections between people and groups of

people, etc. In terms of graph theory, most problems associated with discrete

objects are formulated. Such problems arise in the design of integrated circuits

and control schemes, block diagrams of programs, in economics, statistics,

biology, scheduling theory, discrete optimization and other fields.

Basic concepts and definitions of graph theory

 A graph is a set of points and a set of segments whose ends belong to a given

set of points.

Vertices are called points or nodes, and lines connecting vertices, edges or

arcs, or lines. The edge can have a direction from the vertex A to the vertex B or

vice versa; in this case such an edge is called a directed arc. A vertex A is called

an initial vertex, and B is a finite vertex of an edge. Vertices are indicated in

capital letters or numbers. Vertexes that do not belong to any edge are called

isolated vertices.

Let us consider the problem of the Koenigsberg bridges. The city was located

on the banks of the river Pregel and two islands of the river. Different parts of

the city were connected by seven bridges. The layout of the bridges in

Koenigsberg is shown in Figure 3.1. On Sundays, the townspeople made walks

around the city. The task is to pass each bridge one time and return to the

starting point.

Figure 3.1 Koenigsberg bridges

 71

To prove that the problem does not have a solution, Euler denoted each part

of the land by a point (vertex), and each bridge by a line (edge) connecting the

corresponding parts of the land. A graph was obtained (Figure 3.2), in which the

vertices are marked with the same letters as the four parts of the land in Figure

3.1

 С

 А D

 В

Figure 3.2. Graph model of Koenigsberg bridges

The task was as follows: to find the route of the passage of all four parts of

the land (A, B, C, D), which would begin on any of them, would end on the same

part of the land and pass exactly once on each bridge. Euler proved that this

graph does not represent a single cycle; in other words, from whatever vertex we

start the bypass, we cannot go around the whole graph and go back without

passing any edge twice. If such a cycle existed, then at each vertex of the graph

there would be as many edges entering into it as there are leaving it; at each

vertex of the graph there would be an even number of edges, however, this

condition is not satisfied for the graph representing the map of Koenigsberg.

Euler found in a generalized form the criterion for the existence of such a route

in the graph.

 Machine Representation of Graphs

A classical way of representing graphs is the incidence matrix, which is the

matrix A with n rows corresponding to the vertices and m columns

corresponding to the edges. For an oriented graph, the column corresponding to

the arc <x, y> E contains (-1) in the row corresponding to the vertex x, and (1)

in the row corresponding to the vertex y, and zeros in all other rows (it is

convenient to represent the loop with a different value in row x, for example, 2).

In the case of an undirected graph, the column corresponding to the edge {x, y}

contains 1 in the rows corresponding to x and y, and zeros in the remaining

rows. From the algorithmic point of view, the incidence matrix is not a very

good representation of the graph: first, it requires n * m memory cells, and most

of these cells are generally occupied by zeros. Access to information is also

inconvenient. The answer to elementary questions requires, in the worst case, a

search of all columns of the matrix, and consequently m steps.

 72

<
1

,2 >

<
1

,3 >

<
3

,2 >

<
3

,4 >

<
5

,4 >

<
5

,6 >

<
6

,5 >

1 -1 -1 0 0 0 0 0

2 1 0 1 0 0 0 0

3 0 1 -1 -1 0 0 0

4 0 0 0 1 1 0 0

5 0 0 0 0 -1 -1 1

6 0 0 0 0 0 1 -1

Figure 3.3. Oriented graph and its incidence matrix

{
1

,2
}

{
1

,3
}

{
1

,5
}

{
2

,3
}

{
2

,5
}

{
3

,4
}

{
4

,5
}

{
4

,6
}

{
5

,6
}

1 1 1 1 0 0 0 0 0 0

2 1 0 0 1 1 0 0 0 0

3 0 1 0 1 0 1 0 0 0

4 0 0 0 0 0 1 1 1 0

5 0 0 1 0 1 0 1 0 1

6 0 0 0 0 0 0 0 1 1

Figure 3.4 An undirected graph and its incidence matrix

A more convenient way to represent a graph is an adjacency matrix - a

square matrix of size n * n, where bij = 1, if there exists an edge leading from

vertex x to vertex y, and bij = 0 - otherwise. Since in an undirected graph the

edge {x, y} goes both from x to y and from y to x, the adjacency matrix of such

a graph is always symmetric with respect to the main diagonal. The

disadvantage is the fact that, regardless of the number of edges, the amount of

occupied memory is n2.

It is often required to find vertices in the graph that have certain properties.

To do this, you need to bypass the graph, that is, view all its vertices. Therefore,

graph bypass algorithms are often called search or browsing algorithms.

Task 1. Create a program to view all the vertices of the graph using the "in-

depth" search method (Deep Force Search -DFS).

Note: A method called “deep force search - DFS” (retraction) in the graph

became one of the main methods of programming and graph algorithms.

Viewing of graph vertices begins with some vertex u. A vertex v adjacent

to u is chosen. The process is repeated from the vertex v. If at the next step there

are no vertices adjacent to u and not previously viewed (new), then we return

from vertex u to the vertex from which we got to u. If all the vertices of the

graph are viewed (returned to the first vertex by stack), the view is finished.

Solution: Let the graph be described by the adjacency matrix A. The view

starts from the first vertex. Figure 3.8.5 shows the original graph, and in Figure

3.8.6, the vertices in parentheses indicate the order in which the vertices of the

graph were viewed during the depth search.

 73

Figure 3.5 Initial graph Figure 3.6 Vertices view

Initial file has the following view:
 N

 A[1,1] A[1,2] ... A[1,N]

 A[2,1] A[2,2] ... A[2,N]

 . . .

 A[N,1] A[N,2] ... A[N,N]}

Implementation of the algorithm for enumerating the vertices of the graph in

depth (Deep Force Search - DFS):
Var Pom:Array[1..20] of Boolean;

 i,j,yk,n:Integer;

 f:Text;

 r:Char;

 s:String;

 a:Array[1..20,1..20]of Integer;

{Recursive depth-search procedure}

Procedure DFS(v:Byte);

Var v:Byte;

Begin

 Write(u,’ ’);

 Pom[u]:=False;

 For v:=1 To n Do

 If (a[u,v]=1) and Pom[v]

 Then

 DFS(v);

End;

Begin

 Assign(f,’glub.in’);

 Reset(f);

 Readln(f,n);

 For i:=1 To n Do

 For j:=1 To n Do

 Read(f,a[i,j]);

 FillChar(pom,sizeof(pom),True);

 k:=0;

 74

 For i:=1 To n Do

 If Pom[i] Then

 Begin

 Inc(yk);

 DFSg(i);

 End;

 Writeln(k)

End.

In view of the importance of this algorithm, we consider its non-recursive

realization. Global arrays are the same: Sm is an adjacency matrix, Pom is an

array of vertex attributes (new / viewed). The numbers of the viewed vertices are

stored in the St stack, yk is the stack pointer.
Procedure DFS1(v:Integer);

Var St:Array[1..N] of Integer;

 yk:Integer;

 t,j:Integer;

 flag:Boolean;

Begin

 FillChar(St,sizeof(St),0);

 yk:=0;

 Inc(yk);

 St[yk]:=u1;

 Pom[u1]:=False;

 While yk<>0 do

 Begin

 u:=St[yk]; {extract the vertex from the stack}

 v:=0;

 flag:=false;

 Repeat

 v:=v+1;

 If (Sm[u,v]=1) and Pom[v]

 Then

 flag:=True

 Else

 Inc(v);

 Until flag or (v>=N);

 If flag Then

 Begin

 Inc(yk);

 St[yk]:=v; {add the vertex into the stack}

 Pom[v]:=False; {mark it as a visited}

 End

 Else

 Dec(yk);

 End;

End;

 75

Methodical instructions:

 The method of tracing is a powerful tool in achieving an understanding of the

essence of methods. Consider the operation of the algorithm using the example

of the graph given above.

Yk St Pom u

1 1 F t t t t t t t t 1

2 3 1 F t f t t t t t t 3

3 2 3 1 F f f t t t t t t 2

2 3 1 F f f t t t t t t 3

3 6 3 1 F f f t t f t t t 6

4 7 6 3 1 F f f t t f f t t 7

5 5 7 6 3 1 F f f t f f f t t 5

6 4 5 7 6 3 1 F f f f f f f t t 4

5 5 7 6 3 1 F f f f f f f t t 5

6 8 5 7 6 3 1 F f f f f f f f t 8

5 5 7 6 3 1 F f f f f f f f t 7

5 9 7 6 3 1 F f f f f f f f f 9

4 7 6 3 1 F f f f f f f f f 6

3 6 3 1 F f f f f f f f f 3

2 3 1 F f f f f f f f f 1

1 1 F f f f f f f f f -

0

Task 2. Create a program to search through the graph vertices using the brute

force (BFS) method.

Note: When searching in depth, the later the vertex will be visited, the

earlier it will be used - more precisely, so it will be under the assumption that

the second vertex has been visited before using the first one.

This is a direct consequence of the fact that viewed but not yet used

vertices accumulate on the stack.

The width search, roughly speaking, is based on replacing the stack with a

queue.

After this modification, the earlier visited vertex is (placed in the queue),

the earlier it is used (it is removed from the queue).

The use of the vertex occurs by viewing all the neighbors of this vertex that

have not yet been viewed.

At each step, one item is extracted from the start of the queue, and all the

associated vertices that are not yet in the queue are added to the end, so the

elements are marked as processed at the time they hit the queue, rather than

extracting from it.

 76

 Figure 3.7 Figure 3.8

Solution: use the og array to store the viewed vertices.

Var Pom: Array[1..20] of Boolean;

 u,v,n:Integer;

 f:Text;

 Sm:Array[1..20,1..20] of Integer;

Procedure BFS(v:Integer);

Var och:Array[1..20] of 0..20;

 yk1,yk2:Integer;

 u:Integer;

Begin

 FillChar(og,sizeof(og),0);

 och[1]:=v;

 Pom[v]:=False;

 yk1:=1; {pointer to the beginning of the queue}

 yk2:=1; {pointer to the end of the queue}

 While yk1<=yk2 Do

 Begin

 Write(och[yk1],’ ’);

 u:=och[yk1];

 For v:=1 To n Do

 If (Sm[u,v]=1) and Pom[v] Then

 Begin

 Pom[v]:=False;

 yk2:=yk2+1;

 och[yk2]:=v;

 End;

 End;

End;

Begin

 Assign(f,’BFS.in’);

 Reset(f);

 77

 Readln(f,n);

 For u:=1 to n do

 For v:=1 to n do

 Read(f,Sm[u,v]);

 FillChar(Pom,Sizeof(Pom),True);

 BFS(1);

 For u:=1 To yk1 Do

 Write(och[u],’ ’);

End.

Note: Both types of graph search - DFS and BFS - can be used to find the path

between fixed vertices u1 and v1. Start the search at the vertex u1 and run it

until the vertex v1 is visited. The advantage of searching in depth is the fact that

at the moment of visiting the vertex v the stack contains a sequence of vertices

that determines the path from u to v. The drawback of the DFS algorithm is that

the path thus obtained will not in general be the shortest path from u to v. A

width search gives the shortest path, but to find it, you need to modify the BFS

procedure. It is necessary to use a structure in which the numbers of the graph

vertices are remembered, from where we came to the current vertex (numbers of

the "ancestors" of the vertices):

If (Sm[u,v]=1) and Pom[v]

 Then

 Begin

 Pom[v]:=False;

 yk2:=yk2+1;

 och[yk2]:=v;

 predok[v]:=u;

 End;

{ Restoring the path from the queue }

v:=v1;

Repeat

 Write(v,’ ’);

 v:=predok[v];

Until v=0;

Task 3. Make a program for constructing an attainability matrix.

Note: In an oriented graph, a path can be defined as a sequence of arcs in

which the terminal vertex of any arc other than the last one is the initial vertex of

the next.

If there exists a path from vertex u to vertex v, then we say that vertex v is

reachable from vertex u.

The reachability matrix D is defined as follows:

D [u, v] = 1 if the vertex v is reachable from u and 0 otherwise

 78

Figure 3.9 Matrix of the graph attainability

Var i,n,j:Integer;

 f:Text;

 Sm,Dost:Array[1..20,1..20] of Integer;

Procedure Reach;

Var S,T:Set of 1..20;

 u,v,l:Integer;

Begin

 For u:=1 To n Do

 Begin

 T:=[u];

 Repeat

 S:=T;

 For l:=1 To n Do

 If l in s Then

 For v:=1 To n Do

 If Sm[l,v]=1

 Then

 T:=T+[v];

 Until S=T;

 For v:=1 To n Do

 If v in T

 Then

 Dost[u,v]:=1;

 End;

End;

Tasks for independent work:

1. Construct a graph model. Draw matrices Sm, Dost.

2. Elaborate the programs for finding the matrices Sm and Dost for various

methods of describing the graph. Enter the description of the graph from the file

(consider the case of a weighted graph).

1 2

3 5

4 6

7

 79

4 Standard modules

4.1 Text screen mode

The standard module Crt includes procedures and functions for working in

the text mode of the monitor.

Screen cleaning: ClrScr;

After cleaning the screen, the cursor moves to the upper left corner.

Moving the cursor to the specified screen position:
GotoXY (<position>, <string>);

It is worth recalling that the text screen has 25 lines of 80 character

positions in each. The numbering starts from the upper-left corner of the screen,

which corresponds to coordinates 1.1. Moving the cursor is used to display a

message at the arbitrary part of the screen using the Write command.

Change the color of characters: ТехtСо1оr(<colour>);
The color of the symbols is denoted by an integer C in [0..15]. After executing

this procedure, all characters are displayed in the specified color until it is changed

again. The default color is 7 (gray).

Change the background color: TextBackGround (<color>);

For the background colors with numbers 0..7 are used. The background

color clears the screen.

For example, if you run TextBackGround (1) and ClrScr, the

screen will be cleared in blue. The default color is 0 (black).

In order to limit the screen area used for input and output, you can use the

procedure for defining a text box: Window (xl, y1, x2, y2);

After completing this procedure, all input and output is performed only

within the specified window.

The module Crt has a delay function for a given number of milliseconds:

Delay(n);

Example 1. Build a Christmas tree on the screen.
uses crt;

var x,y,I,j:integer;

begin

 x:=40;

 y:=5;

 k:=0;

 TextColor(2);

 for i:=1 to 5 do

 begin

 for j:=x-k to x+k do

 begin

 gotoxy(i,y);

 write(‘*’);

 end;

 k:=k+2;

 80

 y:=y+1;

 end;

 TextColor(6);

 for j:=y to y+4 do

 begin

 gotoxy(x,j);

 write(‘*’);

 end;

end.

Tasks for independent work

1. Write procedure for constructing a rectangle with given coordinates of

opposite angles and color in text mode. Using it, display several

rectangles on the given coordinates and color.

2. Add to the result of Example 1 several dancers dancing around the

Christmas tree, drawn with the symbols «О», «<», «>», «\|/».

4.2 Graphical display mode

The Graph module is designed for graphical operation. When using

graphics mode, you must:

1. connect the Graph module (uses Graph;)

2. Declare the graphical constants gd, gm, which determine the type of

graphics adapter and mode

3. initialize the graphical mode: initgraph (gd, gm, 'path to

the BGI folder');

uses graph;

var gt,gm:integer;

begin

 initgraph(gd,gm,’’):

 {graphic procedures}

 readln;

 closegraph;

end.

The screen size in the graphical mode is 1024 x 768 pixels (X, Y) - the dot on

the graphical screen (1 <= X <= 1024- horizontally, 1 <= Y <= 768 - for Free

Pascal)

Main graphical procedures:

МоvеТо(х,у)

MoveRel(Dx,Dy)

Set the graphic cursor to the specified

position (from given increments of

coordinates)

 81

Arc(X,Y,A,B,R) drawing an arc of a circle

Circle(Х,У,Radius) tracing a circle

Ellipse(X,Y,A,B,Rx,Ry) drawing an ellipse (arc)

FillEllipse(X,Y,Rx,Ry) drawing a painted ellipse

Sector(X,Y,A,B,Rx,Ry) drawing of the painted sector of the

ellipse

Line(x1,у1,x2,у2) drawing a line with given coordinates

LineTo(x,у)

Drawing a line from the current

position of the graphic cursor to the

specified point

Rectangle(xl,уl,x2,у2) drawing an unpainted rectangle with

given coordinates of opposite angles

Bar(x1,у1,х2,у2) shaded rectangle

Bar3D(x1,у1,х2,у2,L,S) a three-dimensional parallelepiped S

is a sign of the mapping of the upper

plane

ClearDevice cleaning the graphic screen

FloodFill(x,y,c) Paint the bounded area using the

current placeholder

OutText(String) Displays text at the current cursor

position

OutTextXY(X,Y,String) Outputting a string at a point (X, Y)

PutPixel(X,Y,C) The output of the point X, Y by the

color C

SetBkColor (C) Sets the current background color

SetColor(C) Sets the current color of the drawing

SetFillStyle(шаблон,цвет) Sets the type of shading and its color
SetLineStyle(type,colour,thick-

ness)

Sets the thickness and type of the line

SetTextStyle(font,type,size) Sets the font, type and size of the

character

Colour constants:

Black 0 (black)

Blue 1 (blue)

Green 2 (green)

Cyan 3 (cyan)

Red 4 (red)

Magenta 5 (magenta)

Brown 6 (brown)

LightGray 7 (light gray)

DarkGray 8 (dark gray)

LightBlue 9 (light blue)

LightGreen 10 (light green)

 82

LightCyan 11 (light cyan)

LightRed 12 (light red)

LightMagenta 13 (light magenta)

Yellow 14 (yellow)

White 15 (white)

Blink 128 (blink)

Setting the type of filling: SetFillStyle (<template>,

<colour>);

The template parameter specifies the type of hatching and can use

predefined constants:

Constant Meaning Filling

EmptyFill

SolidFill

LineFiIl

ItSlashFill

SlashFill

BkSlashFil

LtBkSlash

HatchFill

XhatchFill

InterleaveFill

WideDotFill

CloseDotFill

UserFill

0

1

2

3

4

5

6

7

8

9

10

11

12

Background filling

Solid filling

Horizontal lines filling

Lines tilted to the right

Bold lines tilted to the right

Bold lines tilted to the left

Lines tilted to the left

Rare hatching

Frequent hatching

Dashed filling

Line of frequent points

Line of rare points

User filling

To paint an arbitrary closed loop, use the following procedure:
FloodFill (x, y, <border color>);

The X and Y coordinates indicate the point inside the outline, from which it

will occur. The border color indicates the color by which the outline is bordered.

Example 1. Make an output program for the "starry sky" screen
Uses Crt,Graph;

Var x,y,c,n,I,gd,gm:Integer;

Begin

 Write(’n=’);Readln(n);

 Initgraph(gd,gm,’’);

 Randomize;

 For i:=1 to n do

 Begin

 x:=Random(1200);

 y:=Random(800);

 c:=Random(15);

 PutPixel(x,y,c);

 83

 End;

 Delay(5000);

 CloseGraph;

End.

Note: Instead of outputting points, you can output:

1. A circle of radius 2
SetColor(c);

 Circle(x,y,2);

2. A circle of radius R
SetColor(c);

R:=Random(100);

Circle(x,y,R);

Example 2. Create an output program for the display of N rectangles of the

same size horizontally.
Uses Crt,Graph;

Var x,y,a,b,n,I,c,sh,gd,gm:Integer;

Begin

 Write(’n=’);Readln(n);

 Initgraph(gd,gm,’’);

 x:=10;

 y:=400;

 a:=20;

 b:=200;

 c:=0;

 sh:=0;

 For i:=1 to n do

 Begin

 c:=c+1;

 If c>15 then c:=1;

 sh:=sh+1;

 If sh>12 then sh:=1;

 SetColor(c);

 Rectangle(x,y,x+a,y-b);

SetFillStyle(sh,c);

FloodFill(x+2,y-2,c);

x:=x+25;

End;

Delay(5000);

Closegraph;

End.

Example 3. Issue N shaded squares on the diagonal of the screen
Uses Crt,Graph;

Var x,y,n,I,c,sh,gd,gm:Integer;

Begin

 Write(’n=’);

 84

 Readln(n);

 Initgraph(gd,gm,’’);

 x:=10;

 y:=10;

 c:=0;

 sh:=0;

 For i:=1 to n do

 Begin

 c:=c+1;

 If c>15 then c:=1;

 sh:=sh+1;

 If sh>12 then sh:=1;

 SetColor(c);

 Rectangle(x,y,x+20,y+20);

SetFillStyle(sh,c);

FloodFill(x+2,y-2,c);

x:=x+25;

y:=y+25;

 End;

 Delay(5000);

 Closegraph;

 End.

Example 4. Display N enclosed Concentric Circles.
Uses Crt,Graph;

Var x,y,n,i,c,sh,r,gd,gm:Integer;

Begin

 Write(’n=’);

 Readln(n);

 Initgraph(gd,gm,’’);

 x:=600;

 y:=400;

 r:=5;

 For i:=1 to n do

 Begin

 c:=c+1;

 If c>15 then c:=1;

 SetColor(c);

 Circle(x,y,r);

r:=r+10;

 End;

 Delay(5000);

 Closegraph;

 End.

Procedures are used to obtain the effect of animation.

Memorizing the screen area:

 85

GetImage(хl,уl,х2,у2,<buffer>);

The procedure copies the contents of the rectangle with the given

coordinates from the video memory to the buffer (in an array or dynamically

allocated memory area). The required size of this area (array) is defined by the

function: ImageSize(xl,yl,х2,у2);

You can call this image using the procedure:
PutImage(X,У,<buffer>,<mask>);

Here Х and Y are the coordinates of the upper corner of the screen, from

which the image from the buffer will be displayed. The parameter <mask>

specifies the logical operation that is performed on the bit representations of the

existing and superimposed images:

Constant Meaning Operation

NormalPut

CopyPut

XorPut

OrPut

AndPut

NotPut

0

0

1

2

3

4

Mov

Mov

Xor

Or

And

Not

Example 5.
uses graph;

const

z:FillPatternType=(205,205,255,255,215,215,250,250);

var gd,gm:integer;

 size:word;

 P:Pointer;

begin

gd:=Detect;

InitGraph(gd,gm,'');

SetColor(10);

SetFillPattern(z,12);

Bar(100,100,500,200);

Rectangle(120,120,480,180);

Circle(180,250,50);

Circle(420,250,50);

Size:=ImageSize(100,180,200,250);

GetMem(P,Size);

GetImage(100,180,200,250,P^);

Readln;

PutImage(250,250,P^,NormalPut);

Readln;

Readln;

CloseGraph;

end.

 86

To store the stored part of the picture, dynamic memory allocated by the

procedure GetMem was used.

Tasks for independent work

1. Display on the screen n circles of arbitrary radius, colors at the points of

the screen selected randomly.

2. Create an output program for n enclosed squares of arbitrary color and

size.

3. Display n rectangles of the same size vertically.

4. Get on the screen a drawing (of n objects):

5. Make an output program of a chess field on the screen.

4.2.1 Text output in graphical mode

The GRAPH module of the Pascal system allows you to display text in

graphical mode. To do this, use the procedure: OutText (<text>); or

OutTextXY (x, y, <text>);. It is usually used instead of the Write

(Writeln) procedure.

The color of the output text is set by the procedure SetColor. In addition,

you can change other text options - the ability to select the font and the direction

of the output text:

Const Meaning Remark

DefaultFont

TriplexFont

SmallFont

SansSerifFont

GothicFont

HorizDir

VertDir

UserCharSize

0

1

2

3

4

0

1

0

8x8 raster

vector

vector

vector

vector

from left to right

down up

user size

Procedure SetTextStyle (, <direction>, <size>);

sets font type, text direction (horizontal or vertical), and character size.

The procedure SetTextJustify (<Hor.Grid>,

<Reverse.exe>; horizontal and vertical alignment for text:

 87

Constant

Meaning Note

LeftText

СеnterТехт

RightText

BottomТехt

ТорТехt

0

1

2

0

2

left

centered

on the right

on the bottom line

on the top line

The following program sets the handwritten font and displays an inscription

«Hello, boys and girls!».

program NewText;

uses Graph;

var

gd,gm:integer;

TestFont: integer;

begin

TestFont:=InstallUserFont('SCRI');

gd:=Detect;

InitGraph(gd,gm,'');

SetTextStyle(TestFont,HorizDir,5);

OutТехtХY(120,180, 'Hi, boys and girls!');

Readln;

CloseGraph;

end.

Tasks for independent work:

1. Write a function for entering a line in graphical mode in the specified

font. Provide the coordinates on the screen, color and font.

2. Write a procedure for displaying the specified text with a shadow. You

can specify the coordinates on the screen, color and font.

3. Display the running line in large letters in graphical mode.

4.2.2 Creating function graph

Construction of graphs of functions defined in Cartesian coordinates

To construct a function graph, we introduce the following notation: x0, y0

are the coordinates of the origin of the Cartesian system, x, y are the coordinates

of the point on the Cartesian plane, x1, y1 are the screen coordinates of the

point, a, b is the minimum and maximum abscissa (a <= x < = b), c, d are the

minimum and maximum values of the function (c <= y <= d), L is the scaling

factor, which is chosen as follows:

 88

дек

экр

x
ab

ab
L  ,

дек

экр

y
cd

cd
L  , where

декэкр
abab , is the length of the corresponding

segment in the screen (Cartesian) coordinates, h=xi+1 –xi increment of

argument.

Algorithm for creating a function graph

Set the cursor to the starting point of the curve M (a, f (a)), then we

perform the same actions in the loop for x from a to b through the step h:

1. calculate the value of the function y = f (x),

2. We translate Cartesian coordinates x,y into screen coordinates by the

formulas:
x1 = x0 + x * Lx, y1 = y0-y * Ly,

3. connect the previous point with the received (x1, y1).

The program for displaying the graph of the function:
uses crt,graph;

const gt:integer=detect;

 gm:integer=0;

function f(t:real):real;

begin

 f:=(expression);

end;

var x,y,h,a,b,c,d:real;

 lx,ly,x0,y0,n,xl,y1:integer;

begin

write('xmin,xmax:');

 readln(a,b);

 write('Lx,Ly=');

 readln(lx,ly);

writeln('x0,y0=');

 readln(x0,y0);

 write(’h,n=’);

 readln(h,n);

 initgraph(gt,gm,'');

 setcolor(n);

 line(x0+trunc(a*lx)-10,y0,x0+trunc(b*lx)+10,y0);

 line(x0+trunc(b*lx)+10,y0,x0+trunc(b*lx)+7,y0-3);

 line(x0+trunc(b*lx)+10,y0,x0+trunc(b*lx)+7,y0+3);

 x:=a; c:=f(x); d:=f(x);

 while x <=b do

 begin

 x:=x+h;

 if f(x)<c then c:=f(x);

 if f(x)>d then d:=f(x);

 end;

 line(x0,y0-trunc(c*ly)+10,x0,y0-trunc(d*ly)-10);

 89

 line(x0,y0-trunc(d*ly)-10,x0+3,y0-trunc(d*ly)-7);

 line(x0,y0-trunc(d*ly)-10,x0-3,y0-trunc(d*ly)-7);

 x:=a; moveto(x0+trunc(x*lx),y0-trunc(f(x)*ly));

 while x<=b do

 begin

 x:=x+h;

 y:=f(x);

 x1:=x0+trunc(x*lx);

 y1:=y0-trunc(y*ly);

 lineto(x1,y1);

 end;

closegraph;

end.

Remark: The calculation of the scaling factors Lx, Ly can be calculated

from formulas:
Lx=trunc(600/abs(b-a)); Ly=trunc(400/abs(d-c));

You can also choose as a single scaling factor the value L=min(Lx,Ly);

Construction of graphs of functions given in parametric form

Let the function be given by parametric equations:








)(

)(

ty

tx





 where t is parameter whose boundaries change bta  .

The program for constructing a function graph in the case of a parametric

task differs from the one considered earlier only in that the variable t is used as

the loop parameter, and the values of the variables x and y are calculated from

the formulas given by the condition of the task.

uses crt,graph;

const grt:integer=detect;

 grm:integer=0;

function f1(s:real):real;

begin

 f1:=(expression 1)

end;

function f2(s:real):real;

begin

 f2:=(expression 2)

end;

var x,y,h,a,b,c,d,t,xmin,xmax,ymin,ymax:real;

 Lx,Ly,x0,y0,n,x1,y1:integer;

 Grt,grm:integer;

begin

 write('tmin,tmax:');

 readln(a,b);

 90

 write('x0,y0,h,n:');

 readln(x0,y0,h,n);

 initgraph(grt,grm,'');

 setcolor(n);

xmin:=f1(a);

xmax:=f1(a);

t:=a;

while t<=b do

begin

 t:=t+h;

 if f1(t)<xmin then xmin:=f1(t);

 if f1(t)>xmax then xmax:=f1(t);

end;

ymin:=f2(a); ymax:=f2(a); t:=a;

while t<=b do

begin

 t:=t+h;

 if f2(t)<ymin then ymin:=f2(t);

 if f2(t)>ymax then ymax:=f2(t);

end;

Lx:=trunc(600/abs(xmax-xmin));

Ly:=trunc(400/abs(ymax-ymin));

 { axis construction ОХ}

line(x0+trunc(xmin*Lx)-

10,y0,x0+trunc(xmax*Lx)+10,y0);

line(x0+trunc(xmax*Lx)+10,y0,x0+trunc(xmax*Lx)+7,y0-

3);

line(x0+trunс(xmax*Lx)+10,y0,x0+trunc(xmax*Lx)+7,y0+3

); {построение оси ОУ}

line(x0,y0-trunc(ymin*Ly)+10,x0,y0-trunc(ymax*Ly)-

10);

line(x0,y0-trunc(ymax*Ly)-10,x0+3,y0-trunc(ymax*Ly)-

7);

line(x0,y0-trunc(ymax*Ly)-10,x0-3,y0-trunc(ymax*Ly)-

7);

{ creating the graph of the function }

t:=a;

moveto(x0+trunc(f1(t)*Lx),y0-trunc(f2(t)*Ly));

 while t<=b do

 begin

 t:=t+h;

 x:=f1(t);

 y:=f2(t);

 x1:=x0+trunc(x*Lx);

 y1:=y0-trunc(y*Ly);

 lineto(x1,y1);

 91

 end;

 readln

 end.

Construction of graphs of functions in the polar coordinate system

The equation of the curve in the polar coordinate system has the form:

=(), α≤≤β where  is the polar angle,  is the polar radius-vector.

M(x,y)

 ρ

 φ y

 0 x φ

The formulas for the transition from polar coordinates to Cartesian coordinates:

 In the case of specifying a function in a polar coordinate system, the variable

plays the role of an independent parameter  (the cycle parameter), the values of

the variable  are calculated by the formula indicated in the condition of the

problem, and then we apply the formulas for the transition from polar

coordinates to Cartesian ones for calculating the values of the variables x and y.

Example 1. Program for creating the hyperbola graph.
uses crt,graph;

const grt:integer=detect;

 grm:integer=0;

var x,y,h,a,b,ymin,ymax,lx,ly,l:real;

 x0,y0,x1,y1,grt,grm:integer;

begin

 write('a,b=');

 readln(a,b);

 write('x0,y0=');

 readln(x0,y0);

 write(’lx,ly=’);

 readln(lx,ly);

 initgraph(grt,grm,'');

 x:=a;

 ymin:=1/x;

 ymax:=1/x;

 while x<=b do

 begin









)sin(*

)cos(* x





py

 92

 x:=x+0.01;

 if abs(x+0.01)<0.00001 then x:=0.05;

 y:=1/x;

 if y<ymin then ymin:=y;

 if y>ymax then ymax:=y;

end;

 lx:=600/abs(b-a);

 ly:=400/abs(ymax-ymin);

 if lx<ly then l:=lx else l:=ly;

 h:=0.001;

 setcolor(14);

 {construction of coordinate axes}

line(x0+trunc(a*lx)-10,y0,x0+trunc(b*lx)+10,y0);

line(x0+trunc(b*lx)+10,y0,x0+trunc(b*lx)+7,y0-3);

line(x0+trunc(b*lx)+10,y0,x0+trunc(b*lx)+7,y0+3);

line(x0,y0-trunc(ymin*ly)+10,x0,y0-trunc(ymax*ly)-

10);

line(x0,y0-trunc(ymax*ly)-10,x0+3,y0-trunc(ymax*ly)-

7);

line(x0,y0-trunc(ymax*ly)-10,x0-3,y0-trunc(ymax*ly)-

7);

setcolor(7);

 {creating a function graph}

 x:=a;

 while x<-0.2 do

 begin

while x<-0.2 do

 begin

 x1:=round(x0+lx*x);

 y:=1/x;

 y1:=round(y0-ly*y);

 setcolor(round(7*x));

 pieslice(x1,y1,0,360,1);

 x:=x+h;

 end;

 x:=0.2;

 while x<=b do

 begin

 x1:=round(x0+lx*x);

 y:=1/x;

 y1:=round(y0-ly*y);

 setcolor(round(4*x));

 pieslice(x1,y1,0,360,1);

 x:=x+h;

 end;

 setcolor(15);

 93

{output of the names of axes, graph}

 settextstyle(1,0,2);

 outtextXY(327,40,'Y');

 outtextXY(299,200,'O');

 outtextXY(505,210,'X');

 outtextXY(50,21,'Y=1/X');

 setlinestyle(dashedln,0,3);

 setcolor(11);

 rectangle(1,1,638,478);

 readln;

end.

Since the hyperbola is a discontinuous function, the creation is done in two

cycles - separately for each branch.

Example 2. Astroid Development Program











20,sin

tcosx

3

3

twherety

Uses crt,graph;

Const grt:integer=detect;

 grm:integer=0;

Var х,у,t,h:real;

 хl,yl,х0,у0,l:integer;

 Begin

 Initgraph(grt,grm,’’);

 t:=0;

 х0:=320;

 y0:=240;

 l:=150;

 Setcolor(14);

 {construction of coordinate axes}

 Line(320,50,320,405);

 Line(315,55,320,50);

 Line(325,55,320,50);

 Line(20,240,500,240);

 Line(495,235,500,240);

 Line(495,245,500,240);

 Setcolor(7);

 {construction of function graph}

 Moveto(x0+l,у0);

 While t<6.29 do

 Begin

 х:=cos(t)*cos(t)*cos(t);

 у:=sin(t)*sin(t)*sin(t)

{formulas for the transition from Cartesian

coordinates to screen}

 94

 хl:=round(l*x+x0);

 yl:=round(y0-l*у);

 Setcolor(7);

 Lineto(xl,у1);

 t:=t+0.01;

 End;

 SetColor (15);

 {output of the names of axes, graph}

 SetTextStyle(1,0,2);

 OutTextXY(327,40,'Y');

 OutTextXY(299,200,'0');

 OutTextXY(505,210,'Х');

 OutTextXY(50,21,'ASTROID');

 SetLineStyle(dashedln,0,3);

 Setcolor(11);

 Rectangle(1,1,638,478);

 Readln;

End.

Example 3. The program for displaying the cardioid schedule R=1- cos(f),

where 0<=f<=2π.

The program for creating the graph in the polar coordinate system has the

following form:
uses crt,graph;

const grt:integer =detect;

 grm:integer =0;

var r,f,h,а,b:real;

 х,у,l,x0,y0:integer;

begin

write('а='); readln(a);

write('b='); readln(b);

write('h='); rеаdln(h);

write('L='); readln(L);

write('х0='); readln(х0);

write('y0='); readln(у0);

initgraph (grt, grm, '') ;

{construction of the axes of coordinates}

setcolor(2);

line(20,у0,390,y0);

line (390,у0,385,y0-5);

line(390,у0,385,у0+5);

f:=а;

while f<=b do

 begin

 R:=1-cos{f);

 95

{formulas for the transition from polar coordinates

to screen}

 х:=round(1*R*соs(f)+х0);

 у:=round(-1*R*sin(f)+у0);

 f:=f+0.01;

 setcolor(round(11*f));

 pieslice(x,у,1,360,1);

 end;

settextstyle(triplexfont,0,3);

 setco1or(14);

 outtextXY(100,5,'CARDIOID');

 setlinesty1e(dottedln,0,3);

 rectangle(0,0,610,470);

 outtextXY(380,80,'R=1-COS(f)');

setcolor(15) ;

outtextXY(4,235,'O');

 outtextXY(360,234,'Р');

 settextstyle(GOTHICfont,0,6);

readln;

closegraph;

end.

Tasks for independent work

Construct graphs of functions given

1. in the Cartesian coordinate system:

 1.1 y=








1,7

1,52

2 xx

xx

 1.2 y=










]1,1[,1

]1,1[,1

2

2

xx

xx

2. in parametric form:

 2.1








)cos1(

)sin(

tay

ttax
 , 0 t 2

 2.2








tay

tax

3sin

2cos
 0 t 2

3. in polar coordinates:

 3.1 20),sin( fnfar

 3.2 20),cos1( ffar

 3.3 20),cos( fnfar

 96

4.2.3 Modeling the movement of objects

 Algorithm for modeling the movement of an object

1. Determine the coordinates of the current position of the object

2. Determine the color of the object

3. Draw an object

4. Arrange the delay of the object on the screen

5. To paint an object with the background color {erase object}

6. Repeat the algorithm from 1 point

To solve this kind of problem, you just need to add the item "erase" the object

(repeat the construction of the object at the point (x, y) with the background

color or use the ClearDevice procedure).

Example 1. Organize the movement of the circle horizontally.
Uses Crt, Graph;

Var x,y,r,gt,gm:Integer;

Begin

 InitGraph(gt,gm,’’);

 y:=240;

 r:=50;

 For x:=20 to 1200 do

 Begin

 SetColor(4);

 Circle(x,y,r);

 Delay(1000); {drawing and object delay}

 SetColor(0);

 Circle(x,y,r); {erasing an object with a background color}

 End;

Closegraph;

End.

Example 2. Simulate the movement of an object along a circle.
uses crt,graph;

var x,y, r1,r2,i:integer;

 gt,gm:integer;

 t:real;

begin

 initgraph(gt,gm,'');

 r1:=200;

 r2:=20;

 n:=200;

 t:=0;

 SetColor(5);

 Circle(320,240,r1);

 Repeat

 t:=t+0.01;

 97

 x:=trunc(320+r1*cos(t));

 y:=trunc(240-r1*sin(t));

 SetColor(4);

 Circle(x,y,r2);

 Delay (10000);

 SetColor(0);

 Circle (x,y,r2);

 end;

closegraph;

end.

Note: organize the painting of a small circle

Example 3. Simulate the movement of a segment around one of the ends.
uses crt,graph;

var x0,y0,r,x1,y1,c,gt,gm:integer;

 f,x,y:real;

begin

 initgraph(gt,gm,'');

 f:=0;

 x0:=640;

 y0:=480;

 r:=100;

 c:=0;

 repeat

 x:=r*cos(f);

 y:=r*sin(f);

 x1:=x0+trunc(x);

 y1:=y0-trunc(y);

 c:=c+1;

 if c>15 then

 c:=1;

 setcolor(c);

 line(x0,y0,x1,y1);

 delay(5000);

 setcolor(0);

 line(x0,y0,x1,y1);

 f:=f+0.01;

 until f>6.29;

 closegraph;

 end.

Example 4. Simulate the production of a cylindrical surface by rotating a

segment along two circles.

Note: use two circles with the centers at the points (x0, y0) and (x00, y00), and

use the coordinates of the point (x1, y1) moving along the circle with the

coordinates of the center (x0, y0) and the point (x2, y2) moving along the circle

with the coordinates of the center (x00, y00).

 98

f:=0;

c:=0;

repeat

 x:=r*cos(f);

 y:=r*sin(f);

 x1:=x0+trunc(x);

 y1:=y0-trunc(y);

 x2:=x00+trunc(x);

 y2:=y00-trunc(y);

 c:=c+1;

 if c>1 then

 c:=c+1;

 setcolor(c);

 line(x1,y1,x2,y2);

 f:=f+0.01;

until f>6.29;

Tasks for independent work

1. To organize the rotation of the segment around its center.

2. To simulate obtaining the surface of a truncated cone by rotating the ends

of a segment along two circles of different radii.

3. To arrange for the production of a conic surface by rotating one end of the

segment along the circumference when the second end of the segment is

stationary.

4. To stimulate the rotation of the propeller, using the rotation of three

segments, whose origin is in the center of the circle, and the ends of the

segments rotate along the arc of the circle.

 99

LIST OF REFERENCES

1. Algorythmisation and programming languages: Study-manual complex

/МES RК, KazSPU after Abay; authors-compilers: О.S.Akhmetova, B.К.

Tulbasova. – Almaty: KazSPU after Abay, 2012. – 164 p.

2. Dauletkulov, А.B. Olympiads on informatics. – Almaty; RSPC «Daryn»,

1999. – 216p.

3. Faronov, V.V. Turbo Pascal. – StPb.:BHV-Peterburg, 2007. – 1056p.

4. Kultin, N. Turbo Pascal in tasks and examples. – StPb.:BHV-Peterburg,

2000. – 256p.

5. Okulov, S.M. Basics of programming. – М.: UNIMEDIASTYLE, 2002. –

424p.

6. Okulov, S.M. Programming in algorythms. - М.:BINOM. Laboratory of

knowledge, 2002. – 341p.

7. Tsyganova, A.D. Algorythms on graphs. Kostanay.: КSPI, 2007.- 104p.

8. Tsyganova, A.D. Basics of programming. – Kostanay.: КSPI, 2014. –

168p.

9. Tsyganova, A.D. Fundamentals of Pascal programming. - Kostanay, 2005.

-136 p.

10. Tsyganova, A.D. Mathematical bases of programming. – Kostanay.: КSPI,

2016. – 128p.

11. Tsyganova, A.D. Olympic informatics. – Kostanay.: КSPI, 2013. – 179p.

12. Tsyganova, A.D. Theoretical bases of informatics: Study manual for

students of Informatics specialty. – Kostanay.: КSPI, 2011. – 86p.

13. Tsyganova, A.D., Gridneva, V.M. Practice of solving problems in

informatics. Kostanay.: КSPI, 2006. – 183p.

	Kostanay State Pedagogical Institute
	Study Manual
	Kostanay
	T 94 Algorithmization and programming: study manual for students of specialties 5В011100 Informatics. A.D. Tsyganova, V.V. Danilova – Kostanay.: КSPU, 2018. – 99 p.
	When the message 'a =' appears, enter the number 2.5. You receive an error message
	Invalid numeric format and the IDE will return to edit mode. In this case, the program was written correctly, but during its execution an attempt was made to write a real number to the integer variable.
	Tasks for independent work

	Tasks for independent work
	Task for independent work
	Tasks for independent work

	А+В
	А
	X in A

