С другой стороны, присутствие таежных видов щелкунов в регионе подчеркивает возможность закрепления популяций насекомых далеко от основного ареала обитания в течение длительного исторического периода.

Автор благодарит всех специалистов и технических помощников, оказавших помощь в сборе и обработке материалов к данной статье.

СПИСОК ЛИТЕРАТУРЫ

- 1 Брагина Т.М. Закономерности изменений животного населения почв при опустынивании (на примере сухостепной зоны Центральной Азии): Автореф. дисс. ...докт. биол. наук. Москва: ИПЭЭ им. А.Н. Северцова РАН, 2004. 46 с.
- 2 Брагина Т.М. Наурзумская экологическая сеть (история изучения, современное состояние и долгосрочное сохранение биологического разнообразия региона представительства природного объекта Всемирного наследия ЮНЕСКО). Костанай: Костанайполиграфия, 2009. 200 с.
- 3 Lawrence J.F., Newton A.F. Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names) // Biology, Phylogeny, and Classification of Coleoptera. Warszawa, 1995. P. 779 1006.
- 4 Tarnawski D. Sprezykowate (*Coleoptera, Elateridae*). 1. Agrypninae, Negastriinae, Dimiinae i Athoinae. Fauna Polski /D. Tarnawski, Warszawa, 2000. 401 pp.

- 5 Медведев А.А. Щелкуны (*Elateridae*), 2002 // http://www.zin.ru/Animalia/ Coleoptera/rus/incoel.htm
- 6 Медведев С.И. Жесткокрылые. *Coleopte- ra*. Животный мир СССР, Т.3, зона степей. М.– Л.: Изд. АН СССР, 1950. С. 294–347.
- 7 Гурьева Е.Л. Щелкуны // Биокомплексные исследования в Казахстане. Л.: Наука. Ч. III, 1969. С. 396–398.
- 8 Середюк С.Д. Элатеридофауна степных биоценозов Уральской горной страны // Вестник ОГУ. 2011. № 6 (125). С. 101–105.
- 9 Черепанов А.И. Проволочники Западной Сибири: (Определитель). М.: Наука, 1965. 192 с.

Долин В.Г. Определитель личинок жуковщелкунов фауны СССР. – Киев: Изд-во "Урожай", 1978. – 126 с.

- 10 Гурьева Е.Л. Новый вид жука-щелкуна рода *Pseudanostirus* Dol. (Coleoptera, Elateridae) с Алтая и из северной Монголии //Насекомые Монголии. 1984. Вып. 9. С. 295–297.
- 11 Николаев В.А. Ландшафты азиатских степей. М.: Изд-во МГУ, 1999. 288 с.

Түйін

Бұл мақалада Науырзым мемлекеттік табиғи қорының фаунасы мен шерткіштердің (Coleoptera, Elateridae) таралуы жөніндегі мәліметтер берілген.

Conclusion

This article includes the data about fauna and distribution of click beetles (Coleoptera, Elateridae) in the ecosystems of Naurzum Reserve.

ГЕОГРАФИЧЕСКАЯ НОМЕНКЛАТУРА – ОСНОВА ЗНАНИЯ КАРТЫ

Коваль В.В.

Ни один из других предметов в такой степени не нуждается в наглядности и занимательности как география, и в тоже время ни один из предметов не представляет более благоприятного поля для применения наглядных и занимательных способов преподавания, как география.

Н.Н. Баранский

В учебном процессе карта выполняет разнообразные образовательные функции, служит главным средством наглядности в географии. На карте можно увидеть сразу огромные пространства земной поверхности и весь земной шар. Крылатая формула «без карты нет географии» заключает глубокий смысл – как сама географическая наука не может су-

ществовать без карты, так и обучение географии без нее невозможно.

В учебном процессе карта выполняет разнообразные образовательные функции, служит главным средством наглядности в географии. На ней можно увидеть сразу огромные пространства земной поверхности и весь земной шар. Главная функция карты —

отражение сведений о размещении предметов на земной поверхности. Зрительный образ недоступного для непосредственного обозрения пространства, создаваемый с помощью карты, служит основой для формирования представлений о нем.

Н.Н. Баранский писал: «Карта – необходимый посредник между крайне ограниченным в охвате своего непосредственного наблюдения человеком и громадным по своим размерам объектом географического исследования – поверхностью земного шара» [1].

Карта позволяет устанавливать причинно-следственные связи и взаимозависимости как в природе, так и между природными и социально-экономическими объектами, а также развивает географическое мышление и воображение, обогащает устную речь.

Работу по усвоению и закреплению в памяти размещения на карте картографического объекта вместе с соответствующим ему названием принято называть изучением географической номенклатуры.

Знание географической номенклатуры способствует расширению кругозора студентов, а также целостного взгляда на окружающий мир. Трудно представить географа, который, давая физико-географическую характеристику Уральским горам, не знал бы их расположения на карте. Знание географического объекта и его расположения на карте является основой знания карты для любого географа.

Студентам специальности «География» необходимы более полные знания географической номенклатуры — для практического применение этих знаний на занятиях в курсе изучения дисциплин физико-географического цикла.

Ни одна работа, связанная с изучением территории, не может вестись без номенклатуры. Изучение географической номенклатуры – важная часть процесса постижения любого географического учебного курса. Студенты должны знать названия этих географических объектов, уметь показать их на карте, правильно называть и писать. Называть объекты следует, соблюдая правильное произношение и ударение. Учитывая тот факт, что изучение дисциплин физико-географического цикла, таких как «Общее землеведение», «Физическая география материков и океанов» и др., отнимает достаточно большое количество аудиторного времени на усвоение конкретных знаний

каждого из курсов, времени на изучение более полной номенклатуры выделить достаточно трудно, появилась естественная необходимость в разработке специального курса для изучения географических объектов, где главный упор будет делаться на изучение самой номенклатуры, то есть географических объектов материков и океанов.

Таким образом, для студентов 1 курса специальности «География» была разработана и введена в программу обучения элективная дисциплина под названием «Географическая номенклатура».

Главная цель дисциплины «Географическая номенклатура» — научить студентов знать расположение географических объектов разных родов на карте и свободно ориентироваться по ней.

Перед началом преподавания этой дисциплины возникли следующие педагогические задачи:

- как надо показывать объекты на карте;
- **как** обучать, чтобы название каждого географического объекта было правильно произнесено и прочно усвоено;
- ▶ как правильно научить искать местонахождение географических объектов на карте.

Все эти задачи решаются вместе, а организация работы со студентами основывается на использовании всех видов памяти — зрительной, слуховой, двигательной и словесносмысловой.

Решение этих задач заключается в следующем:

Во-первых, студенты должны четко знать, как правильно показывать на стенной карте объекты. При показе географических объектов на стенной карте должны соблюдаться следующие правила:

- студенты должны правильно стоять у карты;
- показывать нужно указкой (либо ручкой), не заслоняя рисунка;
- ➤ ставить указку нужно на условный знак, а не на надпись;
- ▶ площади нужно обводить по контуру, а линейные объекты (дороги, реки) показывать движением указки по их ходу в определенном направлении.

Обычно этим правилам учат еще в школе, но опыт преподавания данной дисциплины

показывает, что у небольшого числа студентов на этом этапе работы возникают некоторые сложности. Обычно после первого занятия они устраняются.

Во-вторых, студенты должны четко запомнить одно простое правило – правильно запомнить и проговорить название географического объекта. Прежде всего, это необходимо для того, чтобы этот объект найти на карте, а также для того, чтобы грамотно использовать в дальнейшем изучении географии название каждого из изученных объектов. Например, изучая заливы Атлантического океана, студенты должны найти и запомнить местонахождение залива Таранто, который находится на юге Апеннинского полуострова, но были случаи, когда студенты из-за того, что неправильно запомнили название объекта, вместо Таранто искали Торонто и находили вместо залива город на североамериканском континенте.

В-третьих, мало усвоить название и показать картографическое изображение изученного объекта – нужно, чтобы студент помнил, где на карте находится данный объект, и умел его быстро найти. Для этого следует обращать внимание на положение, какое занимает изучаемый объект среди других окружающих его изображений, и тренировать студентов в запоминании их взаимного расположения. При поиске заданного на карте объекта студент пользуется известной системой ориентиров, по которым он постепенно добирается до цели. Например, студент прочно запоминает, что Кумо-Манычскую впадину следует искать на карте между Каспийским и Азовским морями, а Мраморное море – между проливами Босфор и Дарданеллы, что Бристольский залив находится в Атлантическом и Тихом океанах.

При изучении географической номенклатуры главное – уметь читать карту.

По сложности и глубине выделяют три этапа чтения карты:

➤ первый этап, элементарное чтение карты — заключается в уяснении свойств данного предмета по его внешнему виду;

▶ второй этап, сложное чтение — состоит в умении делать на основе карты суждения о тех свойствах предметов, которые выражены самим рисунком, и, конечно, прежде всего, в умении воссоздать пространственное представление о размещении и взаимном расположении предметов на земной поверхности; третий этап чтения карты требует еще большего напряжения умственных сил. Учащийся пользуется здесь и географическими знаниями, и изображенными на карте фактами, на основе которых при помощи умозаключений он делает выводы, приобретает новые знания [2].

В курсе изучения дисциплины «Географическая номенклатура» студенты четко осваивают первый этап чтения карты, но не просто запоминают и показывают объект на карте и проговаривают его название, а определяют его род. Например, показывая на карте хребет Черкского, горы Бырранга, реку Оленёк, студенты четко запоминают род отмеченного географического объекта, то есть, что Черкского – это хребет, Бырранга – это горы, а Оленёк – это река. Казалось бы, указанное чтение элементарно, но оно подобно освоению азбуки.

Чтобы знать номенклатуру и легко находить тот или иной географический объект на карте, необходимо потратить огромное количество времени на поиск объекта и его запоминание. Без усвоения навыков элементарного чтения нельзя двигаться к более сложному ее изучению.

Умение читать карту вырабатывается не сразу, оно должно углубляться и совершенствоваться постепенно, в системе, то есть при изучении следующих курсов географических дисциплин, когда, зная расположение объекта на карте, его название и род, студенты дают его физико-географические характеристики и могут выявить причинно-следственные связи.

При поиске географических объектов на карте студентам необходимо использовать географические атласы.

Атлас — это систематическое собрание карт, выполненных по единой программе и изданных в виде книги, альбома, комплекта листов в папке в одном или нескольких томах или в электронной форме.

При изучении географической номенклатуры использования школьного атласа «Физическая география материков и океанов» за 7 класс недостаточно. Необходимо использовать также «Большой атлас мира» и «Малый атлас мира», так как в них рассматривается расположение нескольких десятков тысяч географических объектов с указанием их родов. Работать по таким атласам удобно. Используя специально разработанный алфавит-

ный указатель с системой индексов и номеров страниц, можно достаточно быстро найти интересующий объект на карте.

Лучшим средством для усвоения географической номенклатуры на карте является сама карта.

Одним из весьма продуктивных приемов для проверки знаний карты у студентов является работа с контурными картами.

Работа с контурными картами преследует цель — закрепить и проверить картографические представления студентов. Само черчение здесь сведено к минимуму, так как картографический контур страны на карте сохранен. Это упрощает дело и дает возможность легко привлечь всех учащихся к картографической работе.

Данный прием используется на таких занятиях, как СРОП, для закрепления знаний по каждой пройденной теме практического занятия. Работа с контурными картами предполагает несколько различных вариантов работ, рассмотрим только два из них:

- ➤ один из более простых вариантов работы состоит в том, что, ориентируясь по своим настольным картам, учащиеся находят на контурной карте, отмечают и подписывают названия местоположения нужных объектов, например, находят, обводят и подписывают реки, горы, течения и т.п.;
- ➤ более сложный вариант работы, но в то же время интересный и весьма показательный в плане быстрой проверки знаний пройденного материала заключается в том, что студенты должны отмечать и подписывать заданные географические объекты на своих контурных картах по памяти, без использования настольные и стенных карт. При проведении данной работы можно отлично проверить степень освоения студентами изученной темы, а именно грамотность написания географических объектов и правильное местонахождение объекта с указанием его рода.

С целью более успешного закрепления в памяти картографического образа географического объекта и связанного с ним его географического названия на лекциях студентам дается дополнительная информация об изучаемом объекте. Например, о происхождении названия, о том или ином случае, интересном факте, приуроченном к данному объекту, и т.п. Часто в самом названии географического объекта заложен глубокий смысл, и истолко-

вание его помогает не только запомнить название, но и понять его сущность. Например, Джомолунгма, или Эверест, является самой высокой горой на земном шаре. Она располагается в Больших Гималаях, на границе Китая и Непала. Официально ее высота составляет 8848 м. Именно она зафиксирована во всех учебниках, справочных словарях и географических атласах. Вершина была открыта в 1832 году работниками Британской геодезической службы, находящейся на территории Индии. Англичане проводили обработку съемок некоторых гималайских вершин и выяснили, что безымянная гора, отмеченная на карте как Пик XV, является наиболее высокой из всех вершин данного хребта. В честь начальника геодезической службы открытая вершина была названа Эверестом. Именно под этим названием вершина сегодня известна во многих странах мира. Задолго до открытия ее европейцами местные жители знали о существовании вершины и о том, что она является самой высокой. Монахи Тибета называли ее Джомолунгма, что означает «Богиня – мать Земли», Джумуланг-мафенг, или «Богиня – птица бури», Канг-Ча-Мо-Лун – «Снег в царстве птиц». В Непале она известна как Сагарматха, или «Небесная вершина». Или, например, Огненная Земля (исп. Tierra del Fuego) – архипелаг на крайнем юге Южной Америки, в состав которого входит около 40 тысяч островов. Площадь -73753 км 2 , из них на Исла-Гранде приходится около 48 тыс. км². Огненная Земля отделена от материка Магеллановым проливом, а от Антарктиды – проливом Дрейка. Крупнейший остров Исла-Гранде и лежащие к югу Осте и Наварино разделены проливом Бигля. Высшая точка - гора Дарвин (2488 м), ранее таковой считалась гора Шиптон (2469 м). Первооткрыватель Магеллан считал, что архипелаг - северная часть Неведомой Южной земли - Terra Australis Incognita. Свое название архипелаг получил после его плавания в 1520 году. Местные жители по ночам жгли костры, но Магеллан решил, что это огни вулканического происхождения, и назвал открытую территорию Огненной Землей [3]. Такие приемы работы пробуждают интерес у студентов, вследствие чего они легче запоминает не только название и расположение, но и картографический образ объекта.

Практическая значимость дисциплины «Географическая номенклатура» велика, так

как на последующих курсах студенты используют приобретенные знания при работе с географическими картами.

СПИСОК ЛИТЕРАТУРЫ

- 1 Географические рекорды // География. 2006. №3. С. 26.
- 2 Теоретические основы методики обучения географии / Под ред. А.Е. Бибик и др. М.: «Просвещение», 1968.

3 http://ru.wikipedia.org

Түйін

Мақалада географиядағы географиялық қатар, онымен жұмыс істеудің негізгі әдістері қарастырылған.

Conclusion

This article describes the value of a geographic nomenclature in geography, as well as getting things done with it.

ФОРМИРОВАНИЕ РАСТИТЕЛЬНОГО ПОКРОВА НА ТЕХНОГЕННЫХ ОТВАЛАХ СОКОЛОВСКОГО РУДНИКА

Конысбаева Д.Т., Орманбекова Д.О.

Мощность рудодобываемых предприятий на территории Костанайской области неуклонно возрастает. Следовательно, сокращаются плодородные степные территории, которые использовались или могли бы использоваться для получения сельскохозяйственной продукции. В связи с тем, что избежать сокращения этих территорий невозможно, а рекультивация требует огромных капиталовложений и не всегда осуществляемая, необходима разработка альтернативного варианта. Для ограничения отрицательного воздействия промышленных отвалов на окружающую среду необходимо создание условий для естественного самозарастания. Это в свою очередь обусловливает необходимость тщательного изучения свойств субстрата, сложившегося на закономерностей отвалах, ИΧ зарастания растительностью. Естественная растительность таких отвалов является в значительной степени индикатором пригодности грунтов для биологической рекультивации, а изучение ее видового состава облегчает подбор ассортимента растений для этой цели.

В Костанайской области открытым способом добываются черные металлы, медная руда, уголь и асбест. Наибольшее промышленное значение имеют уникальные железорудные месторождения: Соколовское, Сарбайское, Качарское, Лисаковское. Они являются сырьевой базой Соколовско-Сарбайского горно-обогатительного объединения. Открытые горные разработки полезных ископаемых приводят к необратимым нарушениям растительного покрова. На больших площадях возника-

ют обширные «пустыни» – промышленные отвалы [1].

Термин «техногенный ландшафт» для промышленных отвалов можно считать наиболее точным. При образовании отвалов возникают экотопы, свободные от растительности и служащие первичным субстратом для поселения на них растений. При комплексном изучении различных типов техногенных ландшафтов отмечаются снижение в формирующихся фитоценозах разнообразия видов, замена стенотопных видов эвритопными, наблюдается экспансия некоторых видов через внедрение их в сообщества техногенных ландшафтов.

Экспериментальные исследования по изучению естественного зарастания направлены на формирование устойчивых, стабильных фитоценозов. Чем сложнее по видовому составу растительное сообщество, чем больше в нем внутренних и внешних связей, тем разнообразнее и стабильнее вся экосистема.

Формирование растительного покрова на нарушенных землях идет по типу сингенеза. Сингенез осуществляется в четыре этапа: экотопическая группировка, простая группировка, элементарная сложная группировка и фитоценоз.

Техногенные ландшафты отличаются экологическим своеобразием. В лесостепной и степной зонах наблюдается определенная (относительно зональных сообществ) мезофитизация и даже гигромезофитизация флор техногенных объектов за счет некоторых видов растений, произрастающих в блюдцеобразных понижениях на отвалах. В составе флоры от-